Alpha Star Generalized \(\omega \) - Closed Sets in Bitopological Spaces

By

Qays Hatem Imran

Al-Muthanna University, College of Education, Department of Mathematics
Al-Muthanna, Iraq

E-mail : alrubaye84@yahoo.com

Abstract:
The aim of this paper is to introduce the concepts of alpha star generalized \(\omega \) - closed sets, alpha star generalized \(\omega \) - open sets and study their basic properties in bitopological spaces.

Keywords: \(\tau_1 \tau_2 \) - alpha star generalized \(\omega \) - closed sets, \(\tau_i \tau_j \) - alpha star generalized \(\omega \) - open sets, \(\tau_i \tau_j \) - generalized \(\omega \) - closed sets.

1. Introduction:
Levine, [7] initiated the study of generalized closed sets in topological spaces in 1970. In 1963, J. C. Kelly, [2] defined: a set equipped with two topologies is called a bitopological space, denoted by \((X, \tau_1, \tau_2)\) where \((X, \tau_1)\) and \((X, \tau_2)\) are two topological spaces. Semi generalized closed sets and generalized semi closed sets are extended to bitopological settings by F. H. Khedr and H. S. Al-saadi, [1]. K. Chandrasekhar Rao and K. Kannan, [5,6] introduced the concepts of semi star generalized closed sets in bitopological spaces. Moreover, the concept of generalized closed sets were introduced in ideal bitopological spaces by Noiri and Rajesh [9]. In 1986, T. Fukutake, [8] generalized this notion to bitopological spaces and he defined a set \(A \) of a bitopological space \(X \) to be an \(ij \)-generalized closed set (briefly \(ij \)-g-closed) if \(j - cl(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\tau_i \)-open in \(X, i, j = 1,2 \) and \(i \neq j \). For any subset \(A \subseteq X \), \(\tau_i \)-int\((A) \) and \(\tau_i \)-cl\((A) \) denote the interior and closure of a set \(A \) with respect to the topology \(\tau_i \), for \(i = 1,2 \). The closure and interior with respect to the topology \(\tau_i \) of \(B \) relative to \(A \) is written as \(\tau_i \)-cl\(_A\)\(B\) and \(\tau_i \)-int\(_A\)\(B\) respectively. A point \(x \in X \) is called a condensation point of \(A \) if for each \(U \in \tau \) with \(x \in U \), the set \(U \cap A \) is uncountable. \(A \) is called \(\omega \) - closed if it contains all its condensation points. The complement of an \(\omega \) - closed set is called \(\omega \) - open. It is well known that a subset \(A \) of a space \((X, \tau) \) is \(\omega \) - open if and only if for each \(x \in A \), there exists \(U \in \tau \) such that \(x \in U \) and \(U \cap W \) is countable. The family of all \(\omega \) - open subsets of a space \((X, \tau) \), by \(\tau_\omega \) or \(\omega \mathcal{O}(X) \), forms a topology on \(X \) finer than \(\tau \). The \(\omega \) - closure and \(\omega \) - interior with respect to the topology \(\tau_i \), that can be defined in a manner similar to \(\tau_i \)-cl\((A) \) and \(\tau_i \)-int\((A) \), respectively, will be denoted by \(\tau_i \)-cl\(_\omega\)\(A\) and \(\tau_i \)-int\(_\omega\)\(A\), respectively. \(A^c \) or \(X - A \) denotes the
complement of A in X unless explicitly stated. The aim of this communication is to introduce the concepts of $\tau_1\tau_2$ - alpha star generalized closed sets, $\tau_1\tau_2$ - alpha star generalized ω - closed sets, $\tau_1\tau_2$ - alpha star generalized ω - open sets and study their basic properties in bitopological spaces. We shall require the following known definitions.

Definition 1.1:

A subset A of a bitopological space (X, τ_1, τ_2) is called
(i) $\tau_1\tau_2$ - α - open [4] if
$$A \subseteq \tau_1 - \text{int}(\tau_2 - \text{cl}(\tau_1 - \text{int}(A))).$$
(ii) $\tau_1\tau_2$ - α - closed [4] if $X - A$ is $\tau_1\tau_2$ - α - open.
Equivalently, a subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ - α - closed if $\tau_2 - \text{cl}(\tau_1 - \text{int}(\tau_2 - \text{cl}(A))) \subseteq A$.

(iii) $\tau_1\tau_2$ - generalized closed (briefly $\tau_1\tau_2 - g$ - closed) [8] if $\tau_2 - \text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 - open in X,
(iv) $\tau_1\tau_2$ - generalized open (briefly $\tau_1\tau_2 - g$ - open) [8] if $X - A$ is $\tau_1\tau_2 - g$ - closed.
(v) $\tau_1\tau_2$ - α generalized closed (briefly $\tau_1\tau_2 - \alpha g$ - closed) [4] if $\tau_2 - \alpha\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 - open in X.
(vi) $\tau_1\tau_2$ - α generalized open (briefly $\tau_1\tau_2 - \alpha g$ - open) [4] if $X - A$ is $\tau_1\tau_2 - \alpha g$ - closed.

Definition 1.2:

A subset A of a bitopological space (X, τ_1, τ_2) is called
(i) $\tau_1\tau_2$ - generalized ω - closed (briefly $\tau_1\tau_2 - g\omega$ - closed) [3] if $\tau_2 - \text{cl}_\omega(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 - open in X.
(ii) $\tau_1\tau_2$ - generalized ω - open (briefly $\tau_1\tau_2 - g\omega$ - open) [3] if $X - A$ is $\tau_1\tau_2 - g\omega$ - closed.
(iii) $\tau_1\tau_2$ - α generalized ω - closed (briefly $\tau_1\tau_2 - \alpha g\omega$ - closed) if $\tau_2 - \alpha\text{cl}_\omega(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 - open in X.
(iv) $\tau_1\tau_2$ - α generalized ω - open (briefly $\tau_1\tau_2 - \alpha g\omega$ - open) if $X - A$ is $\tau_1\tau_2 - \alpha g\omega$ - closed.

2. Alpha Star Generalized Closed Sets:

In this section we define and study the concept of $\tau_1\tau_2 - \alpha^*$ generalized closed sets in bitopological spaces.

Definition 2.1:

A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2 - \alpha^*$ generalized closed (briefly $\tau_1\tau_2 - \alpha^* g$ - closed) if $\tau_2 - \text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 - open in X.

Example 2.2:

Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}, \{b, c\}\}$, \(\tau_2 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}\). Then $\{a, b\}$ is $\tau_1\tau_2 - \alpha^* g$ - closed and $\{a\}$ is not $\tau_1\tau_2 - \alpha^* g$ - closed.

Definition 2.3:

A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2 - \alpha^*$ generalized open (briefly $\tau_1\tau_2 - \alpha^* g$ - open) if and only if $X - A$ is $\tau_1\tau_2 - \alpha^* g$ - closed.
Theorem 2.4:

The arbitrary union of $\tau_i \tau_2 - \alpha^* g$ - closed sets $A_i, i \in I$ in a bitopological space (X, τ_1, τ_2) is $\tau_i \tau_2 - \alpha^* g$ - closed if the family \{ $A_i, i \in I$ \} is τ_2 - locally finite.

Proof:

Let \{ $A_i, i \in I$ \} be τ_2 - locally finite and A_i is $\tau_i \tau_2 - \alpha^* g$ - closed in X for each $i \in I$. Let $\bigcup A_i \subseteq U$ and U is τ_1 - open in X. Then, $A_i \subseteq U$ and U is τ_1 - open in X for each $i \in I$. Since A_i is $\tau_i \tau_2 - \alpha^* g$ - closed in X for each $i \in I$, we have $\tau_2 - cl(A_i) \subseteq U$.

Consequently, $\bigcup [\tau_2 - cl(A_i)] \subseteq U$. Since the family \{ $A_i, i \in I$ \} be τ_2 - locally finite, $\tau_2 - cl(\bigcup(A_i)) = \bigcup (\tau_2 - cl(A_i)) \subseteq U$.

Therefore, $\bigcup A_i$ is $\tau_i \tau_2 - \alpha^* g$ - closed in X. ■

Theorem 2.5:

The arbitrary intersection of $\tau_i \tau_2 - \alpha^* g$ - open sets $A_i, i \in I$ in a bitopological space (X, τ_1, τ_2) is $\tau_i \tau_2 - \alpha^* g$ - open if the family \{ $A_i^c, i \in I$ \} is τ_2 - locally finite.

Proof:

Let \{ $A_i^c, i \in I$ \} be τ_2 - locally finite and A_i is $\tau_i \tau_2 - \alpha^* g$ - open in X for each $i \in I$. Then, A_i^c is $\tau_i \tau_2 - \alpha^* g$ - closed in X for each $i \in I$. Then by theorem (2.4), we have $\bigcup (A_i^c) = \tau_i \tau_2 - \alpha^* g$ - closed in X.

Consequently, $(\bigcap A_i)^c$ is $\tau_i \tau_2 - \alpha^* g$ - closed in X. Therefore, $\bigcap A_i$ is $\tau_i \tau_2 - \alpha^* g$ - open in X. ■

3. Alpha Star Generalized ω - Closed Sets:

In this section we define and study the concept of $\tau_i \tau_2 - \alpha^*$ generalized ω - closed sets in bitopological spaces.

Definition 3.1:

A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_i \tau_2 - \alpha^*$ generalized ω - closed (briefly $\tau_i \tau_2 - \alpha^* g\omega$ - closed) if $\tau_2 - cl_{\omega}(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 - open in X.

Example 3.2:

Let X be the set of all real numbers R, $\tau_1 = \{ \phi, R, R - Q \}$, $\tau_2 = \{ \phi, R, Q \}$, where Q is the set of all rational numbers. Then $R - Q$ is $\tau_i \tau_2 - \alpha^* g\omega$ - closed.

Theorem 3.3:

Let (X, τ_1, τ_2) be a bitopological space and $A \subseteq X$. Then the following are true.

(i) If A is $\tau_2 - \omega$ - closed, then A is $\tau_i \tau_2 - \alpha^* g\omega$ - closed.

(ii) If A is τ_1 - open and $\tau_i \tau_2 - \alpha^* g\omega$ - closed, then A is $\tau_2 - \omega$ - closed.

(iii) If A is $\tau_i \tau_2 - \alpha^* g\omega$ - closed, then A is $\tau_i \tau_2 - g\omega$ - closed.

Proof:

(i) Suppose that A is $\tau_2 - \omega$ - closed, let $A \subseteq U$ and U is τ_1 - open in X. Then $\tau_2 - cl_{\omega}(A) = A \subseteq U$. Consequently, A is $\tau_i \tau_2 - \alpha^* g\omega$ - closed.

(ii) Suppose that A is τ_1 - open and $\tau_i \tau_2 - \alpha^* g\omega$ - closed. Let $A \subseteq A$ and A is τ_1 - open. Then $\tau_2 - cl_{\omega}(A) \subseteq A$. Therefore,
\[\tau_2 - cl_\omega(A) = A. \quad \text{Consequently} \quad A \text{ is } \tau_2 - \omega \text{-closed.} \]

(iii) Suppose that \(A \) is \(\tau_1 \tau_2 - \alpha^* g \omega \text{-closed} \), let \(A \subseteq U \) and \(U \) is \(\tau_1 \text{-open in } X \). Since \(U \) is \(\tau_1 \text{-open in } X \), we have \(\tau_2 - cl_\omega(A) \subseteq U \).

Consequently, \(A \) is \(\tau_1 \tau_2 - g \omega \text{-closed}. \]

Since, \(\tau_2 - cl_\omega(A) \subseteq \tau_2 - cl(A) \), we have the following theorem.

Theorem 3.4:

Every \(\tau_1 \tau_2 - \alpha^* g \) -closed set is \(\tau_1 \tau_2 - \alpha^* g \omega \text{-closed} \) and every \(\tau_2 \) -closed set is \(\tau_1 \tau_2 - \alpha^* g \omega \text{-closed} \).

Remark 3.5:

From the theorem (3.3), theorem (3.4) and above definitions, we have the following relations.

Theorem 3.6:

If \(A \) is \(\tau_1 \tau_2 - \alpha^* g \omega \text{-closed in } X \) and \(A \subseteq B \subseteq \tau_2 - cl_\omega(A) \), then \(B \) is \(\tau_1 \tau_2 - \alpha^* g \omega \text{-closed}. \]

Proof:

Suppose that \(A \) is \(\tau_1 \tau_2 - \alpha^* g \omega \text{-closed in } X \) and \(A \subseteq B \subseteq \tau_2 - cl_\omega(A) \). Let \(B \subseteq U \) and \(U \) is \(\tau_1 \text{-open in } X \). Then \(A \subseteq U \). Since \(A \) is \(\tau_1 \tau_2 - \alpha^* g \omega \text{-closed} \), we have \(\tau_2 - cl_\omega(A) \subseteq U \). Since \(B \subseteq \tau_2 - cl_\omega(A) \), \(\tau_2 - cl_\omega(B) \subseteq \tau_2 - cl_\omega(A) \subseteq U \). Hence \(B \) is \(\tau_1 \tau_2 - \alpha^* g \omega \text{-closed}. \]

Theorem 3.7:

If \(A \) and \(B \) are \(\tau_1 \tau_2 - \alpha^* g \omega \text{-closed sets} \) then so is \(A \cup B \).

Proof:

Suppose that \(A \) and \(B \) are \(\tau_1 \tau_2 - \alpha^* g \omega \text{-closed sets} \). Let \(U \) be \(\tau_1 \text{-open in } X \) and \(A \cup B \subseteq U \). Then \(A \subseteq U \) and \(B \subseteq U \). Since \(A \) and \(B \) are \(\tau_1 \tau_2 - \alpha^* g \omega \text{-closed sets} \), we have \(\tau_2 - cl_\omega(A) \subseteq U \) and \(\tau_2 - cl_\omega(B) \subseteq U \).

Consequently, \(\tau_2 - cl_\omega(A \cup B) \subseteq U \).

Therefore, \(A \cup B \) is \(\tau_1 \tau_2 - \alpha^* g \omega \text{-closed}. \]

Theorem 3.8:

Let \(B \subseteq A \subseteq X \) where \(A \) is \(\tau_1 \text{-open} \) and \(\tau_1 \tau_2 - \alpha^* g \omega \text{-closed} \) in \(X \). Then \(B \) is \(\tau_1 \tau_2 - \alpha^* g \omega \text{-closed} \) relative to \(A \) if and only if \(B \) is \(\tau_1 \tau_2 - \alpha^* g \omega \text{-closed} \) relative to \(X \).

Proof:

Suppose that \(B \subseteq A \subseteq X \) where \(A \) is \(\tau_1 \text{-open} \) and \(\tau_1 \tau_2 - \alpha^* g \omega \text{-closed} \). Suppose that \(B \) is \(\tau_1 \tau_2 - \alpha^* g \omega \text{-closed} \) relative to \(A \).

Let \(B \subseteq U \) and \(U \) is \(\tau_1 \text{-open in } X \). Since
A ⊆ X , A is τ₁ - open, we have A ∪ U is τ₁ - open in X . Consequently A ∩ U is τ₁ - open in A . Since B ⊆ A , B ⊆ U , we have B ⊆ A ∩ U . Since B is τ₁ τ₂ - α⁺ gω - closed relative to A , we have τ₂ - clω(Bₐ) ⊆ A ∩ U . Therefore , τ₂ - clω(Bₐ) ⊆ U .

Since A is τ₁ - open , we have τ₂ - clω(Bₐ) = τ₂ - clω(B) ∩ A = τ₂ - clω(B) ⊆ U . Hence B is τ₁ τ₂ - α⁺ gω - closed relative to X .

Conversely, suppose that B is τ₁ τ₂ - α⁺ gω - closed relative to X . Let B ⊆ U and U is τ₁ - open in A . Since A ⊆ X , we have U is τ₁ - open in X . Since B is τ₁ τ₂ - α⁺ gω - closed relative to X , we have τ₂ - clω(B) ⊆ U . Now , τ₂ - clω(Bₐ) = τ₂ - clω(B) ∩ A = τ₂ - clω(B) ⊆ U . Therefore , B is τ₁ τ₂ - α⁺ gω - closed relative to A .

Corollary 3.9:

If A is τ₁ τ₂ - α⁺ gω - closed , τ₁ - open in X and F is τ₂ - ω - closed in X , then A ∩ F is τ₂ - ω - closed in X .

Proof:

Since A is τ₁ τ₂ - α⁺ gω - closed , τ₁ - open in X , we have A is τ₂ - ω - closed in X . { By Theorem (3.3) (ii) }. Since F is τ₂ - ω - closed in X , A ∩ F is τ₂ - ω - closed in X .

Theorem 3.10:

If A is τ₁ τ₂ - α⁺ gω - closed in X , then τ₂ - clω(A) - A contains no nonempty τ₁ - closed set .

Proof:

Suppose that A is τ₁ τ₂ - α⁺ gω - closed in X . Let F be τ₁ - closed and

\[F \subseteq \tau₂ - clω(A) - A . \]

Since F be τ₁ - closed , we have F^c is τ₁ - open .

Since F ⊆ τ₂ - clω(A) - A , we have

\[F \subseteq \tau₂ - clω(A) \]

and A ⊆ F^c . Since A is τ₁ τ₂ - α⁺ gω - closed in X , we have

\[\tau₂ - clω(A) \subseteq F^c . \]

Consequently, F = φ . Hence τ₂ - clω(A) - A contains no nonempty τ₁ - closed set .

Corollary 3.11:

Let A be τ₁ τ₂ - α⁺ gω - closed , then A is τ₂ - ω - closed if and only if τ₂ - clω(A) - A is τ₁ - closed .

Proof:

Suppose that A is τ₁ τ₂ - α⁺ gω - closed . Since A is τ₂ - ω - closed , we have τ₂ - clω(A) = A . Then τ₂ - clω(A) - A = φ is τ₁ - closed . Conversely, suppose that A is τ₁ τ₂ - α⁺ gω - closed and τ₂ - clω(A) - A is τ₁ - closed . Since A is τ₁ τ₂ - α⁺ gω - closed , we have τ₂ - clω(A) - A contains no nonempty τ₁ - closed set { by Theorem (3.10) }. Since τ₂ - clω(A) - A is itself τ₁ - closed , we have τ₂ - clω(A) - A = φ . Then τ₂ - clω(A) = A . Hence A is τ₂ - ω - closed .

Theorem 3.12:

If A is τ₁ τ₂ - α⁺ gω - closed and

A ⊆ B ⊆ τ₂ - clω(A) , then τ₂ - clω(B) - B contains no nonempty τ₁ - closed set .

Proof:

Let A be τ₁ τ₂ - α⁺ gω - closed and
A \subseteq B \subseteq \tau_2 - cl_\omega(A)$. Then B is
\(\tau_1 \tau_2 - \alpha^* g\omega\)-closed. (By Theorem (3.6)).
Hence $\tau_2 - cl_\omega(B) - B$ contains no nonempty τ_1-closed set. (By Theorem (3.10)).

4. Alpha Star Generalized ω - Open Sets:

We begin this section with a relatively new definition.

Definition 4.1:

A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2 - \alpha^*$ generalized ω-open (briefly $\tau_1 \tau_2 - \alpha^* g\omega$-open) if and only if $X - A$ is $\tau_1 \tau_2 - \alpha^* g\omega$-closed.

Example 4.2:

In Example (3.2), Q is $\tau_1 \tau_2 - \alpha^* g\omega$-open.

Theorem 4.3:

A set A is $\tau_1 \tau_2 - \alpha^* g\omega$-open if and only if $F \subseteq \tau_2 - \text{int}_\omega(A)$ whenever F is τ_1-closed and $F \subseteq A$.

Proof:

Suppose that A is $\tau_1 \tau_2 - \alpha^* g\omega$-open. Suppose that F is τ_1-closed and $F \subseteq A$. Then F^c is τ_1-open and $A^c \subseteq F^c$. Since A^c is $\tau_1 \tau_2 - \alpha^* g\omega$-closed, we have $\tau_2 - cl_\omega(A^c) \subseteq F^c$. Since $\tau_2 - cl_\omega(A^c) = (\tau_2 - \text{int}_\omega(A))^c$, we have $F \subseteq \tau_2 - \text{int}_\omega(A)$.

Conversely, suppose that $F \subseteq \tau_2 - \text{int}_\omega(A)$ whenever F is τ_1-closed and $F \subseteq A$. Then $A^c \subseteq F^c$ and F^c is τ_1-open. Since $F \subseteq \tau_2 - \text{int}_\omega(A)$, and $\tau_2 - cl_\omega(A^c) = (\tau_2 - \text{int}_\omega(A))^c$, we have $\tau_2 - cl_\omega(A^c) \subseteq U$.

Then A^c is $\tau_1 \tau_2 - \alpha^* g\omega$-closed. Consequently, A is $\tau_1 \tau_2 - \alpha^* g\omega$-open.

Theorem 4.4:

If A and B are separated $\tau_1 \tau_2 - \alpha^* g\omega$-open sets then $A \cup B$ is $\tau_1 \tau_2 - \alpha^* g\omega$-open set.

Proof:

Suppose A and B are separated $\tau_1 \tau_2 - \alpha^* g\omega$-open sets. Let F be τ_1-closed and $F \subseteq A \cup B$. Since A and B are separated , we have $\tau_1 - cl(A) \cap B = A \cap \tau_1 - cl(B) = \emptyset$ and $\tau_2 - cl(A) \cap B = A \cap \tau_2 - cl(B) = \emptyset$.

Then, $F \cap \tau_2 - cl(A) \subseteq (A \cup B) \cap \tau_2 - cl(A) = A$. Similarly, we can prove $F \cap \tau_2 - cl(B) \subseteq B$. Since F is τ_1-closed, we have $F \cap \tau_1 - cl(A)$ and $F \cap \tau_1 - cl(B)$ are τ_1-closed. Since A and B are $\tau_1 \tau_2 - \alpha^* g\omega$-open, we have $F \cap \tau_2 - cl(A) \subseteq \tau_2 - \text{int}_\omega(A)$ and $F \cap \tau_2 - cl(B) \subseteq \tau_2 - \text{int}_\omega(B)$. Now,

$F = F \cap (A \cup B) \subseteq [F \cap \tau_2 - cl(A)] \cup [F \cap \tau_2 - cl(B)] \subseteq \tau_2 - \text{int}_\omega(A \cup B)$.

Therefore, $A \cup B$ is $\tau_1 \tau_2 - \alpha^* g\omega$-open.

Theorem 4.5:

If A and B are $\tau_1 \tau_2 - \alpha^* g\omega$-open sets then so is $A \cap B$.

Proof:

Suppose that A and B are $\tau_1 \tau_2 - \alpha^* g\omega$-open sets. Let F be τ_1-closed and $F \subseteq A \cap B$. Then, $F \subseteq A$ and $F \subseteq B$. Since A and B are $\tau_1 \tau_2 - \alpha^* g\omega$-open, we have $F \subseteq \tau_2 - \text{int}_\omega(A)$ and $F \subseteq \tau_2 - \text{int}_\omega(B)$.

Hence $F \subseteq \tau_2 - \text{int}_\omega(A \cap B)$.
Consequently, \(A \cap B \) is \(\tau_1 \tau_2 - \alpha^* g \omega \)-open set.

Theorem 4.6:

If \(A \) is \(\tau_1 \tau_2 - \alpha^* g \omega \)-open in \(X \) and \(\tau_2 - \text{int}_{\omega} (A) \subseteq B \subseteq A \), then \(B \) is \(\tau_1 \tau_2 - \alpha^* g \omega \)-open.

Proof:

Suppose that \(A \) is \(\tau_1 \tau_2 - \alpha^* g \omega \)-open in \(X \) and \(\tau_2 - \text{int}_{\omega} (A) \subseteq B \subseteq A \). Let \(F \) be \(\tau_1 \)-closed and \(F \subseteq B \). Since \(F \subseteq B \), \(B \subseteq A \), we have \(F \subseteq A \). Since \(A \) is \(\tau_1 \tau_2 - \alpha^* g \omega \)-open, we have

\[F \subseteq \tau_2 - \text{int}_{\omega} (A). \]

Since \(\tau_2 - \text{int}_{\omega} (A) \subseteq B \), we have \(\tau_2 - \text{int}_{\omega} (A) \subseteq \tau_2 - \text{int}_{\omega} (B) \).

Then \(F \subseteq \tau_2 - \text{int}_{\omega} (B) \). Therefore, \(B \) is \(\tau_1 \tau_2 - \alpha^* g \omega \)-open set.

Theorem 4.7:

If \(A \) is \(\tau_1 \tau_2 - \alpha^* g \omega \)-closed in \(X \) then \(\tau_2 - \text{cl}_{\omega} (A) - A \) is \(\tau_1 \tau_2 - \alpha^* g \omega \)-open.

Proof:

Suppose that \(A \) is \(\tau_1 \tau_2 - \alpha^* g \omega \)-closed in \(X \). Let \(F \) be \(\tau_1 \)-closed and

\[F \subseteq \tau_2 - \text{cl}_{\omega} (A) - A. \]

Since \(A \) is \(\tau_1 \tau_2 - \alpha^* g \omega \)-closed in \(X \), \(\tau_2 - \text{cl}_{\omega} (A) - A \) contains no nonempty \(\tau_1 \)-closed set. Since

\[F \subseteq \tau_2 - \text{cl}_{\omega} (A) - A, \quad F = \phi \subseteq \tau_2 - \text{int}_{\omega} (\tau_2 - \text{cl}_{\omega} (A) - A). \]

Therefore,

\[\tau_2 - \text{cl}_{\omega} (A) - A \] is \(\tau_1 \tau_2 - \alpha^* g \omega \)-open.

Theorem 4.8:

If \(A \) is \(\tau_1 \tau_2 - \alpha^* g \omega \)-open in a bitopological space \((X, \tau_1, \tau_2) \), then \(G = X \) whenever \(G \) is \(\tau_1 \)-open and \(\tau_2 - \text{cl}_{\omega} (A) \cup A^c \subseteq G \).

Proof:

Suppose that \(A \) is \(\tau_1 \tau_2 - \alpha^* g \omega \)-open in a bitopological space \((X, \tau_1, \tau_2) \) and \(G \) is \(\tau_1 \)-open and \(\tau_2 - \text{cl}_{\omega} (A) \cup A^c \subseteq G \).

Then, \(G^c \subseteq (\tau_2 - \text{int}_{\omega} (A) \cup A^c)^c \)

\[= \tau_2 - \text{cl}_{\omega} (A^c) - A^c. \]

Since \(G^c \) is \(\tau_1 \)-closed and \(A^c \) is \(\tau_1 \tau_2 - \alpha^* g \omega \)-closed, we have

\[\tau_2 - \text{cl}_{\omega} (A^c) - A^c \] contains no nonempty \(\tau_1 \)-closed set in \(X \) (By Theorem (3.10)).

Therefore, \(G^c = \phi \). Hence \(G = X \).

Theorem 4.9:

The intersection of a \(\tau_1 \tau_2 - \alpha^* g \omega \)-open set and \(\tau_1 - \omega \)-open set is always \(\tau_1 \tau_2 - \alpha^* g \omega \)-open.

Proof:

Suppose that \(A \) is \(\tau_1 \tau_2 - \alpha^* g \omega \)-open and \(B \) is \(\tau_1 - \omega \)-open. Then \(B^c \) is \(\tau_2 - \omega \)-closed. Therefore, \(B^c \) is \(\tau_1 \tau_2 - \alpha^* g \omega \)-closed. (By Theorem (3.3) (i)). Hence \(B \) is \(\tau_1 \tau_2 - \alpha^* g \omega \)-open. Consequently, \(A \cap B \) is \(\tau_1 \tau_2 - \alpha^* g \omega \)-open. (By Theorem (4.5)).

Theorem 4.10:

If \(A \times B \) is \(\tau_1 \times \sigma_1 \tau_2 \times \sigma_2 - \alpha^* g \omega \)-open subset of \((X \times Y, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2)\), then \(A \) is \(\tau_1 \tau_2 - \alpha^* g \omega \)-open subset in \((X, \tau_1, \tau_2)\) and \(B \) is \(\sigma_1 \sigma_2 - \alpha^* g \omega \)-open subset in \((Y, \sigma_1, \sigma_2)\).

Proof:

Let \(F \) be a \(\tau_1 \)-closed subset of \((X, \tau_1, \tau_2)\) and let \(G \) be a \(\sigma_1 \)-closed subset.
of \((Y, \sigma_1, \sigma_2)\) such that \(F \subseteq A\) and \(G \subseteq B\). Then \(F \times G\) is \(\tau_1 \times \sigma_1\) - closed in
\((X \times Y, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2)\) such that
\(F \times G \subseteq A \times B\). By assumption \(A \times B\) is
\(\tau_1 \times \sigma_1 \tau_2 \times \sigma_2 - \alpha^* g \omega\) - open in
\((X \times Y, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2)\) and so \(F \times G \subseteq
\tau_2 \times \sigma_2 - \text{int}_\omega(A \times B) \subseteq \tau_2 - \text{int}_\omega(A) \times
\sigma_2 - \text{int}_\omega(B)\). Therefore \(F \subseteq \tau_2 - \text{int}_\omega(A)\) and
\(G \subseteq \sigma_2 - \text{int}_\omega(B)\). Hence \(A\) is
\(\tau_1 \tau_2 - \alpha^* g \omega\) - open and \(B\) is \(\sigma_1 \sigma_2 - \alpha^* g \omega\) - open. ■

References:

المستخلص:
الهدف من هذا البحث هو تقديم مفاهيم مجموعات الفا ستار المعممة \(\omega\) - المغلقة ، مجموعات الفا ستار المعممة \(\omega\) - المفتوحة ودراسة خصائصها الأساسية في الفضاءات ثنائية التبولوجي.