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FUNCTIONS

Functions: Functions are a tool for describing the real world in mathematical terms. A
function can be represented by an equation, a graph, a numerical table, or a verbal
description.

y = f(x) ("y equals f of x").

DEFINITION : A function f fromaset D to aset Y is a rule that assigns a unique
(single) element f(x) € Y to each elementx € D .

Domain and Range

Domain: The set D of all possible input values is called the domain of the function.

Range: The set of all values of f(x) as x varies throughout D is called the range of the
function.

Remarks:

1 — The symbol f represents the function, the letter x is the independent variable
representing the input value of f, andy is the dependent variable or output value of f at x.

2 — The range may not include every element in the set Y.

3 — The domain and range of a function can be any sets of objects, but often in calculus they
are sets of real numbers interpreted as points of a coordinate line.

4 — Often a function is given by a formula that describes how to calculate the output value
from the input variable.

5 — When we define a function y = f(x) with a formula and the domain is not stated explicitly
or restricted by context, the domain is assumed to be the largest set of real x-values for which
the formula gives real y-values, the so-called natural domain.

6 — Changing the domain to which we apply a formula usually changes the range as well.

7 — When the range of a function is a set of real numbers, the function is said to be real-
valued.

8 — The domains and ranges of many real-valued functions of a real variable are intervals or
combinations of intervals.

9 — The intervals may be open, closed, or half open, and may be finite or infinite.

10 — The range of a function is not always easy to find.

11 — A function f is like a machine that produces an output value f(x) in its range whenever
we feed it an input value x from its domain (Figure 1.1).
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FIGURE 1.1 A diagram showing a
function as a kind of machine.

12 — A function can also be pictured as an arrow diagram (Figure 1.2).
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FIGURE 1.2 A function fromasetDtoa

set Y assigns a unique element of Y to each

element in D.
13 — A function can have the same value at two different input elements in the domain, but
each input element x is assigned a single output value f(x).

EXAMPLE 1: Let's verify the natural domains and associated ranges of some simple
functions. The domains in each case are the values of x for which the formula makes sense.

Function Domain (x) Range (y)

y = xt (—o0, 0o) [0, o)

y=1/x (=00, 0) (0, oo) (=00, 0) U0, 00)
y=Vx [0, 00) [0, 00)
y=\V4—x (=00, 4] [0, o2)
p=VI1=yx [—1,1] [0, 1]

Solution: 1 — The formula y = x? gives a real y-value for any real number x, so the domain
is (- oo, ). The range of y = x? is [0, ) because the square of any real number is
nonnegative and every nonnegative number y is the square of its own square root ,

2
y=({Jy) for y=0.
2 — The formula y = I/x gives a real y-value for every x except x = 0. For consistency in the
rules of arithmetic, we cannot divide any number by zero. The range of y = 1/x , the set of
reciprocals of all nonzero real numbers,is the set of all nonzero real numbers, since
y = 1/(1ly) . That is, for y # 0 the number x = 1/y is the input assigned to the output value y.

3 - The formula y = +/x gives a real y-value only if x > 0. The range of y = +/x is [0, )
because every nonnegative number is some number's square root (namely, it is the square
root of its own square).

4 — In y = V4 — x, the quantity 4 — x cannot be negative . That is, 4 — x>0, or x < 4. The
formula gives real y-values for all x < 4. The range of v4 — x is [0, ), the set of all
nonnegative numbers.

5—The formula y = V1 — x?2 gives a real y-value for every x in the closed interval from - 1
to 1. Outside this domain. 1 — x? is negative and its square root is not a real number. The
values of 1 — x2 vary from 0 to 1 on the given domain, and the square roots of these values

do the same. The range of V1 — x2 is [0, 1].




Graphs of Functions:
If f isa function with domain D, its graph consists of the points in the Cartesian plane
whose coordinates are the input - output pairs for f. In set notation. The graph is

{(x, f(x)): x € D} .

EXAMPLE: Graph of the function f(x) = x + 2 is the set of points with coordinates (X, y).
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FIGURE 1.3 The graphof fix) = x + 2
is the set of points {x, ¥) for which » has
the value x + 2.

EXAMPLE 2: Graph the function y = x?2 over the interval [-2, 2].

Solution: Make a table of xy-pairs that satisfy the equation y = x?2. Plot the points (x, )
whose coordinates appear in the table, and draw a smooth curve (labeled with its equation)

through the plotted points (see Figure 1.4).
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FIGURE 1.4 Graph of the function in Example 2.

Examples for Graphs the function:
1 - Representing a Function Numerically

We have seen how a function may be represented algebraically by a formula (the area
function) and visually by a graph. Another way to represent a function is numerically, the
graph consisting of only the points in the table is called a scatterplot.
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FIGURE 1.5 A smooth curve through the plotted points gives a graph of the pressure function
2 - The Vertical Line Test for a Function

Not every curve in the coordinate plane can be the graph of a function. A function f can
have only one value f(x) for each x in its domain, so no vertical line can intersect the graph of
a function more than once. If a is in the domain of the function f, then the vertical line x = a
will intersect the graph of f at the single point (a, f(a)) .

A circle cannot be the graph of a function since some vertical lines intersect the circle
twice. The circle in Figure 1.6a, however, does contain the graphs of two functions of x:
The upper semicircle defined by the function f(x) =v1 —x2 and the lower semicircle defined
by the function g(x) = - v1 — x2 (Figures 1.6b and 1.6c).
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FIGURE 1.6 (a) The circle is not the graph of a function; it fails the vertical line test . (b) The upper semicircle is the
graph of a function f(x) = V1 — x2 . (c) The lower semicircle is the graph of a function g(x) = —v1 — x?2 .

3 - Piecewise-Defined Functions
Sometimes a function is described by using different formulas on different parts of its
domain. One example is the absolute value function

X, r=0
¥ = -X, x <0

L1 L1
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FIGURE 1.7 The absolute value function has domain (- o, ) and range [0, o).




EXAMPLE 3: The function

-, x=10
flx) = ¥, 0=x=1

1, x =

Is defined on the entire real line but has values given by different formulas depending on
the position of x. The values of f are given by y =-x when x <0,y =x?2when 0 < x < 1,
and y = 1 when x > 1. The function, however, is just one function whose domain is the entire
set of real numbers (Figure 1.8).
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FIGURE 1.8 To graph the function y = f(x) shown here, we apply different formulas to different parts of its
domain (Example 3).

EXAMPLE 4: The function whose value at any number x is the greatest integer less than or
equal to x is called the greatest integer function or the integer floor function. It is denoted
|x]. Figure 1.9 shows the graph. Observe that

2.4l =2,]19]=1,[0]=0,]|-1.2]=2,[2]=2,]0.2] =0,[-03]|=-1,[-2] =-2
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FIGURE 1.9 The graph of the greatest integer function y =|x| lies on or below the line y = x, so it provides

an integer floor for x (Example 4).

EXAMPLE 5: The function whose value at any number x is the smallest integer greater

than or equal to x is called the least integer function or the integer ceiling function . It is

denoted [x |. Figure 1.10 shows the graph. For positive values of x, this function might
represent.

=

FIGURE 1.10 The graph of the least integer function y = [x | lies on or above the line y = x , so it provides
an integer ceiling for x (Example 5) .




4 - Increasing and Decreasing Functions

If the graph of a function climbs or rises as you move from left to right, we say that the
function is increasing. If the graph descends or falls as you move from left to right, the
function is decreasing.

DEFINITIONS Let f be a function defined on an interval [ and let x| and x; be
any two points in J.
1. If f(x2) = flx;) whenever x; << x;, then f is said to be inereasing on /.

2. If fix;) = fix;) whenever x; < x3, then f is said to be decreasing on [.

It is important to realize that the definitions of increasing and decreasing functions must be
satisfied for every pair of points x; and x, in | with x; < x,. Because we use the inequality <
to compare the function values, instead of <, it is sometimes said that f is strictly increasing
or decreasing on |. The interval | may be finite (also called bounded) or infinite (unbounded)
and by definition never consists of a single point.

EXAMPLE 7: The function graphed in Figure 1.8 is decreasing on (-o0, 0] and increasing on
[0, 1]. The function is neither increasing nor decreasing on the interval [1, «) because of the
strict inequalities used to compare the function values in the definitions.

Even Functions and Odd Functions: Symmetry
The graphs of even and odd functions have characteristic symmetry properties.

DEFINITIONS A function v = f(x) is an

even function of x i f{—x) = f(x),
odd function of x if f(—x) = —f(x),

for every x in the function’s domain.

The graph of an even function is symmetric about they-axis. Since f( -x) = f(x) .

The graph of an odd function is symmetric about the origin. Since f( -x) = - f(x) .
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FIGURE 1.11 (a) The graph of y = x? (an even function) is symmetric about the y-axis. (b) The graph of
y = x3 (an odd function) is symmetric about the origin.




EXAMPLE 8

f(x) = x? Even function: (—x)? = x? for all x; symmetry about y-axis.

f(x)=x%+1 Even function: (-x)? + 1 = x2 + 1 for all x; symmetry about y-axis.
(Figurel.12a).

f(x) = x Odd function: (-x) = -x for all x; symmetry about the origin.

f(x) = x+1 Not odd: f( -x) = -x + 1, but - f(x) = -x - 1. The two are not equal.

Not even: (-x) + L #x + 1 for all x # 0 (Figure 1.12b).
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FIGURE 1.12 (a) When we add the constant term 1 to the function y = x2, the resulting function y = x2? + 1
is still even and its graph is still symmetric about the y-axis. (b) When we add the constant term 1 to the
function y = x, the resulting function y = x + 1 is no longer odd. The symmetry about the origin is lost.

Common Functions:
A variety of important types of functions are frequently encountered in calculus. We
identify and briefly describe them here.

Linear Functions A function of the form f(x) = mx + b, for constants m and b, is called a
linear function. Figure 1.13a shows an array of lines f(x) = mx where b = 0, so these lines
pass through the origin. The function f(x) = x where m = 1 and b = 0 is called the identity
function. Constant functions result when the slope m = 0 (Figurel1.13b). A linear function
with positive slope whose graph passes through the origin is called a proportionality
relationship.
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FIGURE 1.13 (a) Lines through the origin with slope m. (b) A constant function with slope m = 0.




DEFINITION Two variables v and x are proportional (to one another) if one 15
always a constant multiple of the other; that is, if y = kx for some nonzero
constant k.

If the variable y is proportional to the reciprocal 1/x, then sometimes it is said that y is
inversely proportional to x (because 1/x is the multiplicative inverse of x).

Power Functions A function f(x) = x% , where a is a constant, is called a power function.
There are several important cases to consider.

(a) a = n, a positive integer.

FIGURE 1.14 Graphs of f(X) = x™ , n=1,2,3,4,5, defined for -oo < x < o0 .

(b)a=-1or a=-2.
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FIGURE 1.15 Graphs of the power functions f(x) = x® for part (a)a=-1 and for part (b) a =-2.
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The functions f(x) = x /2= Vx and g(x) = x'/3= Vx are the square root and cube root
functions, respectively. The domain of the square root function is [0, o), but the cube root
function is defined for all real x. Their graphs are displayed in Figure 1.16 along with the

3 2
graphs of y = x°/2 and y= x/3. (Recall that 2 = (x1/2) and x/3 = (x1/3) :
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FIGURE 1.16 Graphs of the power functions a =

Polynomials A function p is a polynomial if

p(x) = apx™+ ap_x" 14+ ax + aq

Where n is a nonnegative integer and the numbers a,, a,, a,,..., a,, are real constants (called
the coefficients of the polynomial) . All polynomials have domain (- o, o). If the leading
coefficient a,,# 0 and n > 0, then n is called the degree of the polynomial. Linear functions
with  m # 0 are polynomials of degree 1. Polynomials of degree 2, usually written as
p(x) = ax? + bx + ¢, are called quadratic functions . Likewise, cubic functions are
polynomials p(x) = ax3 + bx? + cx + d of degree 3. Figure 1.17 shows the graphs of three

polynomials.
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FIGURE 1.17 Graphs of three polynomial functions.

Rational Functions A rational function is a quotient or ratio f(x) = p(x)/g(x), where p and g
are polynomials. The domain of a rational function is the set of all real x for which q(x) # 0.

The graphs of several rational functions are shown in Figure 1.18.
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FIGURE 1.18 Graphs of three rational functions. The straight red lines are called asymptotes and are not
part of the graph.

Algebraic Functions Any function constructed from polynomials using algebraic operations
(addition, subtraction, multiplication, division, and taking roots) lies within the class of
algebraic functions. All rational functions are algebraic, but also included are more
complicated functions (such as those satisfying an equation like ~ y3 —9xy + x3 = 0),
Figure 1.19 displays the graphs of three algebraic functions.
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FIGURE 1.19 Graphs of three algebraic functions.

Trigonometric Functions The six basic trigonometric functions are (sine, cosine, tangent,
cosecant, secant and cotangent). The graphs of the sine and cosine functions are shown in
Figure 1.20.
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FIGURE 1.20 Graphs of the sine and cosine functions.

Exponential Functions Functions of the form f(x) = a*, where the base a > 0 is a positive
constant and a of 1, are called exponential functions. All exponential functions have
domain (- oo, ) and range (0, «), so an exponential function never assumes the value 0. The
graphs of some exponential functions are shown in Figure 1.21.
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FIGURE 1.21 Graphs of exponential functions.

Logarithmic Functions These are the functions f(x) = log, x, where the base a #1is a
positive constant . Figure 1.22 shows the graphs of four logarithmic functions with various
bases. In each case the domain is (0, ) and the range is (-oo, o).

FIGURE 1.22 Graphs of four logarithmic functions. FIGURE 1.23 Graph of a catenary or hanging cable.

(The Latin word catena means "chain.")

Transcendental Functions These are functions that are not algebraic. They include the
trigonometric, inverse trigonometric, exponential, and logarithmic functions, and many other
functions as well. A particular example of a transcendental function is a catenary.

Its graph has the shape of a cable, like a telephone line or electric cable, strung from one
support to another and hanging freely under its own weight (Figure 1.23).




LIMITS AND CONTINUITY

2 1 | Rates of Change and Tangents to Curves

HistorICAL BloGRapiy*

Galileo Galilei
(1564-1642)

Caleulus is a ool to help us understand how functional relationships change, such as the
position or speed of a moving object as a function of time, or the changing slope of a
curve being raversed by a point moving along it, In this section we introduce the ideas of
average and instantaneous rates of change, and show that they are closely related to the
slope of a curve at a point P on the curve. We give precise developments of these impor-
tant concepts in the next chapter, but for now we use an informal approach so vou will see
how they lead naturally to the main idea of the chapter, the limir. You will see that limits
play a major role in calculus and the study of change.

Average and Instantaneous Speed

In the late sixteenth century, Galileo discovered that a solid object dropped from rest (not
maoving) near the surface of the earth and allowed to fall freely will fall a distance propor-
tional to the square of the time it has been falling. This tvpe of motion is called free fall. It
assumes negligible air resistance to slow the object down, and that gravity is the only force
acting on the falling body, If v denotes the distance fallen in feet afier ¢ seconds, then
Galileo's law is

v =167

where 16 is the (approximate) constant of proportionality. (If v is measured in meters, the
constant is 4.9.)

A moving body’s average speed during an interval of time is found by dividing the dis-
tance covered by the time elapsed. The unit of measure is length per unit time: kilometers
per hour, feet (or meters) per second, or whatever is appropriate to the problem at hand.




EXAMPLE 1
{a) during the first 2 sec of fall?

A rock breaks loose from the top of a tall ¢liff. What is its average speed

(b} during the 1-sec interval between second 1 and second 27

Solution  The average speed of the rock during a given time interval is the change in dis-
tance, Ay, divided by the length of the time interval, Ar. (Increments like Ay and Af are
reviewed in Appendix 3.) Measuring distance in feet and time in seconds, we have the
following calculations:

: Ay 16(2)7 — 16(0)° fi
{a) Forthe first 2 sec: v B —— K e
S Ay 1627 =161 q

{b)} From sec | tosec 2: A P 48556 .

We want a way to determine the speed of a falling object at a single instant &, instead of
using its average speed over an interval of time. To do this, we examine what happens
when we calculate the average speed over shorter and shorter time intervals starting at &,
The next example illustrates this process. Our discussion is informal here, but it will be
made precise in Chapter 3.

EXAMPLE 2  Find the speed of the falling rock in Example 1 atr = | andr = 2 sec.

Solution  We can ealculate the average speed of the rock over a time interval [#, fn + #],

having length Ar = &, as

Ay 160ty + b — 16657
? _ ik }r [ . (1}

We cannot use this formula to caleulate the “instantaneous™ speed at the exact moment iy
by simply substituting i = 0, because we cannot divide by zero, But we can use it to cal-
culate average speeds over increasingly short time mtervals starting at &y = 1 and fy = 2.
When we do so, we see a pattern (Table 2.1).

TABLE 2.1 Average speeds over short time intervals [fg, £ + K]

A N Ay 160y + h)* — 1667

verage speed: = b

Length of Average speed over Average speed over
time interval interval of length & interval of length A
ht starting at f; = 1 starting at ty = 2
| 48 a0
0.1 XX 65.6
.01 3216 6d.16
.01 32016 64016
0.0001 32.0016 640016

The average speed on intervals starting at &, = 1 seems to approach a limiting value
of 32 as the length of the interval decreases. This suggests that the rock is falling at a speed

of 32 fi/sec at &y = 1 sec. Let’s confirm this algebraically.




Ifwe set iy = 1 and then expand the numerator in Equation (1) and simplify, we find that

Ay 1601+ kP — 1601 16(1 + 2h + A7) - 16
At h a I

n 2
= u =32 4+ 16h.
For values of i different from 0, the expressions on the right and left are equivalent and the
average speed is 32 + 10k fi/sec. We can now see why the average speed has the limiting
value 32 + 16(0) = 32 fi/sec as h approaches 0.
Similarly, setiing & = 2 in Equation (1), the procedure yields

2 _ 64 + 16
Ar *

for values of & different from 0. As f gets closer and closer to 0, the average speed has the
limiting value 64 {1 sec when # = 2 sec, as suggested by Table 2.1, [

The average speed of a falling object is an example of a more general idea which we
discuss next,

Average Rates of Change and Secant Lines

¥ Given an arbitrary function v = fix), we calculate the average rate of change of v with
respect to x over the interval [x,xa] by dividing the change in the wvalue of
Ay = flaz) — fixy), by the length Ax = x; — x; = } of the interval over which the
change ocours. {We use the symbol fi for Ax o simplify the notation here and later on.)

DEFINITION  The average rate of change of v = f{x) with respect to x over the
interval [y, x2] is
Ay flxg) = flo)  flxg £ ) = fl)

r E_ o i . h#= 0.

0

FIGURE 2.1 A secant to the graph
= fix). Itz slope 1s Ay/Ax, the
average rate of change of f over the
interval [x;, x2].

Geometrically, the rate of change of f over [vy, x2] is the slope of the line through the
points Py, flxg b and Oxo, flab) (Figure 2,10 In geometry, a line joining two points of
# curve 15 a secant o the curve. Thus, the average rate of change of f from x| to a2 is iden-
tical with the slope of secant PO Let’s consider what happens as the point (0 approaches
the point 7 along the curve, so the length i of the interval over which the change occurs
approaches zero.

Defining the Slope of a Curve

We know what is meant by the slope of a straight line, which tells us the rate at which it
L rises or falls—its rate of change as the graph of a linear function. But what is meant by the
stope of a curve at a point P on the curve? If there is a tangent line to the curve at P—a
ling that just touches the curve like the angent to a circle—it would be reasonable to iden-
tify the slope of the tangent as the slope of the curve at P. So we need a precise meaning
for the tangent at a point on a curve.
FIGURE 2.2 [ is tangent to the For circles, angency is straightforward. A line L is tangent to a circle at a point & if L
circle at P if it passes through P passes through P perpendicular to the radius at P (Figure 2.2). Such a line just fouches the circle,
perpendicular to radius OF. But what does it mean to say that a line L is tangent to some other curve C at a point 27




Historical BioGrapHy

Fierre de Fermat
(1601-1665)

To define tangency for general curves, we need an approach that takes into account
the behavior of the secants through 7 and nearby points (0 as ) moves toward £ along the
curve (Figure 2.3). Here is the idea:

1. Start with what we can calculare, namely the slope of the secamt PO

2. Investigate the limiting value of the secant slope as O approaches £ along the curve.
{We clarify the limif idea in the next section. )

3. Ifthe limit exists, take it to be the slope of the curve at P and define the tangent to the
curve at 7 to be the line through # with this slope.

This procedure is what we were doing in the falling-rock problem discussed in Example 2.
The next example illustrates the geometric idea for the tangent to a curve,

= Secants

0

Tangent

Secants <

s

FIGURE 2.3 The tangent to the curve at P is the line through P whose slope is the limit of
the secant slopes as 0 — P from either side,

EXAMPLE 3 Find the slope of the parabola v = v at the point P(2, 4). Write an equa-
tion for the tangent to the parabola at this point.

Solution  We begin with a secant line through P2, 4) and (X2 + &, (2 + h}i‘J nearby.
We then write an expression for the slope of the secant P and investigate what happens to
the slope as (2 approaches P along the curve:

Secantslope = 2 _ 2 FH =2 B ianta-4
ecansup&—lr— 7 = h

Rt 4h
h

If i = 0, then {? lies above and to the right of P, as in Figure 2.4, If & <2 0, then (J lies to
the left of P (not shown). In either case, as () approaches F along the curve, & approaches
zero and the secant slope it + 4 approaches 4. We take 4 to be the parabola’s slope at P,

I+ 4.

Y
2+ 0t =4

Secant slope is i+ 4.

NOT TOSCALE

FIGURE 2.4 Finding the slope of the parabola vy = x* at the prvint P2, 4) as the
limit of secant slopes (Example 3).




The tangent 1o the parabola at P is the line through P with slope 4:

y = 4 + dix — 2) Point=slope equation

y=dx — 4, ]

Instantaneous Rates of Change and Tangent Lines

The rates at which the rock in Example 2 was falling at the instamts ¢ = 1 and ¢ = 2 are
called instantaneous rates of change, Instantaneous rates and slopes of tangent lines are
intimately connected, as we will now see in the following examples.

EXAMPLE 4  Figure 2.5 shows how a population p of fruit flies (Drosophila) grew in a
S0-day experiment. The number of flies was counted at regular intervals, the counted val-
ues plotted with respect to time ¢, and the points joined by a smooth curve (colored blue in
Figure 2.3}, Find the average growth rate from day 23 to day 45,

Solutien  There were 150 flies on day 23 and 340 flies on day 45. Thus the number of
flies increased by 340 — 150 = 190 in 45 — 23 = 22 days, The average rate of change
of the population from day 23 1o day 45 was

Ap 340 — 150 _ 190 .
Average rate ol change: VR S 8.6 Mies/day.

AP 8.6 Miediday

Mumber of Mies

23, 150
150 i i Ar
Ar=22
100k
50
i
[ 10 20 ] 40 50
T (diays)

FIGURE 2.5 Growth of a fruit flv population in a controlled
cxperiment, The average rate of change over 22 days is the slope
Ap/Ar of the secant line (Example 4),

This average is the slope of the sccant through the points P and @ on the graph in
Figure 2.5. [ |

The average rate of change from day 23 to day 45 caleulated in Example 4 does not
tell us how fast the population was changing on day 23 itself. For that we need to examine
time intervals closer to the day in question,

EXAMPLES  How fast was the number of {lies in the population of Example 4 growing
on day 237

Solution  To answer this question, we examine the average rates of change over increas-
ingly short time intervals starting at day 23, In geometric terms, we find these rates by
caleulating the slopes of secants from P to (O, for a sequence of points ) approaching P
along the curve (Figure 2.6).
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Slgpe ﬂfPQ: ﬂ-ﬁfﬁlf 150 Ri33, 15[]]_5'.»"' A
0 (flies /day) 0 LA 0045, 340)
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{45, 3407 M = B.6 g 250 i:"za
: 35— > ¥ V /%
330 — 150 _ ) P23, 150) £
{40, 330 =23 ° 1.6 E 150
. 10
310 — 150 I
5 — -
(35,3109 5= 03 13.3 50 ! o
7,
265 — 150 _ — . f
(30, 265) 30 =25 = 16.4 0 1w Ay 0 30 40 50

AL DY e (days)

FIGURE 2.6 The positions and slopes of four sccants through the point P on the fruit fly graph (Example 5.

The values in the table show that the secant slopes rise from 5.6 to 164 as the
t-coordinate of () decreases from 45 to 30, and we would expect the slopes to rise slightly
higher as ¢ continued on toward 23, Geometrically, the secants rotate about P and seem to
approach the red tangent line in the figure. Since the line appears to pass through the
points (14, 0) and (35, 350), it has slope

350 — 0 . _
35— 14 16.7 flies/day (approximately).
On day 23 the population was increasing at a rate ol about 16.7 flies/day. ]

The instantaneous rates in Example 2 were found 1o be the values of the average
speeds, or average rates of change, as the time interval of length & approached 0. That is,
the instantaneous rate is the value the average rate approaches as the length b of the in-
terval over which the change occurs approaches zero, The average rate of change corre-
sponds to the slope of a secant line; the instantaneous rate corresponds to the slope of
the tangent line as the independent variable approaches a lNxed value, In Example 2, the
independent variable ¢ approached the values ¢ = 1 and ¢+ = 2. In Example 3, the inde-
pendent variable x approached the value x = 2. S0 we see that instantaneous rates and
slopes of tangent lines are closely connected, We investigate this connection thoroughly
in the next chapter, bul to do so we need the concept of a limit.




2 2 | Limit of a Function and Limit Laws

HistoricaL Essay

Limits

FIGURE 2.7 The graph of [ is
identical with the ling v = x + |

exceplat x = 1, where [ is not
delined (Example 1),

In Section 2.1 we saw that limits arise when finding the instantaneous rate of change of a
function or the tangent to a curve. Here we begin with an informal definition of fimir and
show how we can calculate the values of limits, A precise definition is presented in the
next section,

Limits of Function Values

Frequently when studying a function v = flx), we find ourselves interested in the fune-
tion's behavior mear a particular point xg, but not @i xg, This might be the case, for instance,
if xy 15 an irrational number, like 7 or % 2, whose values can only be approximated by
“close” rational numbers at which we actually evaluate the function instead. Another situa-
tion occurs when trying o evaluate a function at xg leads w division by zero, which is un-
delined. We encountered this last circumstance when seeking the instantaneous rate of
change in v by considering the guotient function Av/f for b closer and closer o zero.
Here's a specilic example where we explore numerically how o function behaves near a
particular point at which we cannot directly evaluate the function,

EXAMPLE 1 How does the function

N x =1
) =5
behave near v = 17
Solution  The given formula defines f for all real numbers x except x = 1 (we cannot di-

vide by zero), Forany v # 1, we can simplify the formula by factoring the numerator and
canceling common factors;

lx = 1)ix + 1)
—_— =y

- + 1 lor r#* .
x=1

flx) =

The graph of f is the ling v = x + | with the point (1, 2) removed. This removed point is
shown as o “hole™ in Figure 2.7 Even though f{1) is not defined, it is clear that we can
make the value of fix) as close as we want to 2 by choosing x close enough to | {Table 2.2),
[




TABLE 2.2 The closer x gets to 1, the closer f(x) = (x* = 1)/(x = 1)
seems to get to 2

Values of x below and above 1 flxy = ::—_I =x+1, x#F1
0.9 1.9

I.1 2.1

()55 |99

|01 2.01

(),9094 | .54

1.0 2,001

(0,999999 19999949

| OO0 2000001

Let's peneralize the idea illustrated in Example 1.

Suppose f{x) is delined on an open interval about xy, except possibly at xy ftself. 10 fix)
is arbitrarily close to L {(as close to L as we like) for all x sulliciently close 1o xy, we say
that f approaches the limit L as x approaches vy, and write

lim fix) = L,

V==

which is read “the limit of f(x) as x approaches xy is L. For instance, in Example | we
would say that f{x) approaches the limit 2 as v approaches 1, and write

X

lim =2,

ar
= X = ]

lim fix) = 2,

|
Essentially, the delinition says that the values of f(x) are close to the number £ whenever x is
close 1o xg (on either side of xy). This delinition is “informal™ because phrases like arbitrarily
close and sufficiently close are imprecise; their meaning depends on the context, (To a machin-
ist manulaciuring a piston, clese may mean within a few thowsandifs of an inch, To an as-
tronomer studying distant galaxies, close may mean within a few thousand Heli-vears,) Never-
theless, the delinition is clear enough 1o enable us 1o recognize and evaluate limits of specilic
functions. We will need the precise deflinition of Section 2,3, however, when we sel oul 1o
prove theorems about limits, Here are several more examples exploring the idea of limis,

EXAMPLE 2  This example illustrates that the limit value of a function does not depend
on how the function is defined at the point being approached, Consider the three functions
in Figure 2.8, The function f has himit 2 as x — | even though [ s not defined at x = 1.,

N
E

L[]
]

[

E V

Lg%

b

¥

/ I . /
L ' / i i 1 M
Al i1 1 P 0 1 A i |
.
) =1 & —T' ¥ I
@) fie) = =— by gixy =4 F e} hixd =1+ |

L §

FIGURE 2.8 The limits of fix), glx), and fix) all equal 2 a8 ¢ approaches |, However,
only hix) has the same function value as its limit at x

I (Example 2).
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(1) Identity function

v

(b) Coastant function

FIGURE 2.9  The functions in Example 3
have limits at all points xq.

0 x<0

y
L x=0

The function g has limit 2 as x = | even though 2 # g(1). The function / is the only one
of the three functions in Figure 2.8 whose limit as x = | equals its value at x = 1. For k,
we have limg.; Atx) = A(1). This equality of limit and function value is significant, and
we return to it in Section 2.5, [ ]

EXAMPLE 3

(a) If fis the identity function f(x) = x, then for any value of x; (Figure 2.9a),

lim flx) = lim x = xp.

i ) X=Xy

(b) If f is the constant function f(x) = k& (function with the constant value k), then for
any value of v (Figure 2.9b),

lm flx) = lim &k = &k,

LR 1] ¥=*Xy

For instances of each of these rules we have

lim x = 3 and lim (4) = lim(4) = 4,
v} ym=7 y=2
We prove these rules in Example 3 in Section 2.3, [ ]

Some ways that limits can fail to exist are illustrated in Figure 2,10 and described in
the next example,

() Unit step function Uix)

(h) gix) (€) fix)

FIGURE 2.10  None of these functions has a limit as x approaches O (Example 4),

EXAMPLE 4  Discuss the behavior of the following functions as x — 0,
i, x=10

a) Ulx) =

®) Ux) {I. r=1
L x#0

(b) gix) = 0. =0
i, r=1

{¢) flx) =

Hil‘l%. x =




Solution

()

(b)

(¢)

It jumps: The vnit step function C(x) has no limit as x — 0 becavse its values jump
at x = 0. For negative values of x arbitrarily close to zero, Ulx) = 0. For positive
vilues of v arbitrarily close to zero, Uix) = 1, There is no single value L approached
by Ulx) as x — 0 (Figure 2.10a).

It grows taa “large ™ to have a limit, g(x) has no limit as ¥ — 0 because the values of g
grow arbitrarily large in absolute value as x — 0 and do not stay close to any fixed
real number (Figure 2,100).

It ascillates too much o have a limde: flx) hos no limit as @ — 0 because the function’s
vitlues oscillate between +1 and — 1 in every open interval containing 0. The values
do not stay close to any one number as x — 0 (Figure 2.10¢), ]

The Limit Laws

When discussing limits, sometimes we use the notation x — x, if we want 1o emphasize
the point xy that is being approached in the limit process (usually to enhance the clarity of
a particular discussion or example), Other times, such as in the statements of the following
theorem, we use the simpler notation x — ¢ or x — g which avoids the subscript in xy. In
every case, the symbols vy, ¢, and g refer to a single point on the v-axis that may or may
not belong to the domain of the function involved, To caleulate limits of functions that are
arithmetic combinations of functions having known limits, we can use several easy rules,

THEOREM 1—Limit Laws IFL, M, e, and & are real numbers and

lim flx) = L anil lim glx) = M, then

K==y K==y

L. Sum Rude: lim( fix) + glx)) = L+ M
2. Difference Rule: lim( fix) = glx)) = L= M
X Consiant Multiple Rule: lim(ks flx)) = k=L
4. Product Rule: lim( flx)sgix)) = LM
. [x] ;
5. (hiovient Rule: }E.“ ,% = % M #0
6, Power Rule: m[fx)]" = L% na positive integer
To Rowot Rule: lim ¥ fix) = \'!-"? = L' na positive integer

e

(1f v is even, we assume that lim fix) = L = 0.)
gy




EXAMPLE 5

the properties of limits to find the following limits.
Rl i T |

lim(x® + 4x? = 3 b lim & ‘.1
(a) lim(x y ) (b) Lim Tas

X=ey ! amd

Solution

(@ limx* + 4 = 3) = limx' + lim 4% = lim 3

Xy e Y=g re-
i 2
¢’ + 4c* =3

limx* + x* = 1)

)

)

coxt a1 ae
b) lim X . i
(b) s + 5 lim(x* + 5)
Ny

lim x* + lim x? = lim |

Y seed ) D Ny
£ ' 3 »

lim x* + lim §

A =g

b

_ |

B

"+ 5

(¢) I_ipL\/‘l.\‘z -3=V limzm.\'2 -=3)

g .-

V lim 4x® = lim 3

| -2 N D

Va(=2) =3
Vie -3
Vi3

Use the observations lim, .. & = & and lim, .. x = ¢ (Example 3) and

(¢) lim 4’ -3

Noe—s

Sum and Difference Rules

Poswer and Mulnple Rules

Quotient Rule

Sum and Dilference Rules

Power or Product Rule

Root Rule with o 2

Daflerence Rule

Product and Multple Roles

Two consequences of Theorem 1 further simplify the task of calculating limits of polyno-
mials and rational functions. To evaluate the limit of a polynomial function as x ap-
proaches ¢, merely substitute ¢ for x in the formula for the function. To evaluate the limit
of a rational function as x approaches a point ¢ at which the denominator is not zero, sub-
stitute ¢ for v in the formula for the function, (See Examples Sa and 5b.) We state these re-

sults formally as theorems,

THEOREM 2—Limits of Polynomials
If P(x) = apx" + a1 X"~ 4 4 4+ ap, then

lim P(x) = Plc) = a,c"

S

+ uu-l"”-| oo ws

+ ay.

THEOREM 3—Limits of Rational Functions

IF Py and Ofx) are polynomials and (He) # 0, then
Ple) — Ple)
Olx) (el

mm
=y




Identifying Commuon Faciors

It can be shown that it (4x) s a
polynomial and Qie) = 0, then

Ix = e is a factor of Cx), Thus, if
the numerator and denominator of a
rational fungtion af x are bath zero
atx = ¢, they have iy — ¢lasa
commaon factor,

FIGURE 2,11  The graph of

flx) = (x* + x = 2)/(x* = x)in

part (a) is the same as the graph of

g(x) = (x + 2)/x in part (b) except at

x = |, where fis undefined. The functions
have the same limit as x == | (Example 7).

EXAMPLE 6  The following caleulation illustrates Theorems 2 and 3:

i P G U ol U M o ol | el Y
==l  x*+ 5 (=1)F +5 6

=1 ]

Eliminating Zero Denominators Algebraically

Theorem 3 applies only if the denominator of the rational function is not zero at the limit
point ¢, I the denominator is #ero, canceling common factors in the numerstor and de-
nominator may reduce the fraction 1o one whose denominator is no longer zero at ¢, [ this
happens, we can find the limit by substitution in the simplified fraction.

EXAMPLE 7 Evaluate

R
lim 2—'
X==| X = x

Solution  We cannot substitute ¥ = 1 because it makes the denominator zero, We test the
numerator (o see 101, o, is zero at x = 1, [Uis, o it has a factor of (x = 1) in common
with the denominator, Canceling the (x = 1)'s gives a simpler fraction with the same val-
ues as the original forx # 1:

»

X

+

x=2
Xt =x Xy = 1)

Y= D +2) o
WDt 232 e,

a

Using the simpler fraction, we Cind the limit of these values as x = | by substitution:

,

o el

lim =——— = Y
r=el o xt =y gl |

See Figure 2.11. ]

Using Calculators and Computers to Estimate Limits

When we cannot use the Quotient Rule in Theorem | because the limit of the denominator
I8 zero, we can try using a caleulator or computer to guess the limit numerically as x gets
closer and closer to ¢, We used this approach in Example 1, but caleulators and computers
can sometimes give false values and misleading impressions for functions that are unde-
fined at a point or fail to have a limit there, as we now illustrate.

Vx? + 100 = 10

EXAMPLE 8  Estimate the value of ‘li_l‘l:’ 3
Solution  Table 2.3 lists values of the function for several values near x = 0, As x ap-
proaches 0 through the values +1, £0.5, £0.10, and £0,01, the function seems to ap-
proach the number 0,05,

As we take even smaller values of x, £0.0005, +0.0001, £0.00001, and +0,000001,
the function appears to approach the value 0.

Is the answer 0,05 or 0, or some other value? We resolve this question in the next
example, -




Vx* 4+ 100 - 10

TABLE 2.3 Computer values of f(x) = T nearx = 0
X

X J(x)
+1 0.049876 )
+0.5 0.049969

) ‘hes 0,057
+0.1 0.049999 [ PProaches
+0,01 0.050000 |
+0,0005 0.080000 |
+0.0001 0000000 oo
+0,00001  0.000000 [ “PProAches T
£0,000001  0.000000 |

Using o computer or calculator may give ambiguous results, as in the last example.
We cannot substitute x = 0 in the problem, and the numerator and denominator have no
obvious common factors (as they did in Example 7). Sometimes, however, we can create o
common factor algebraically,

EXAMPLE 9  Evaluate

Vat 4+ 100 = 10
lim = :

N=={) aA”

Solution  This is the limit we considered in Example 8. We can create a common factor
by multiplying both numerator and denominator by the conjugate radical expression
Vx? 4+ 100 + 10 (obtained by changing the sign after the square root). The preliminary
algebra rationalizes the numerator:

Var + 100 =10  Vx* + 100 = |()' Vs + 100 + 10
x? x? Vit 4 100 + 10
Xt + 100 = 100

CA(VATF 100 + 10)

b,

L ———— Common fisctor

(Va4 100 + 10)

3 . Cuncel x° for «
Vx© 4+ 100 + 10

Therefore,

limm Vot 100 = 10 lim |
r=+) x? 0N v 100 + 10

| Dremamanator o Ol

1— ¥ 11 subsiitue
W05 4 100 + 10

|
= === (05,
20 ~ 005
This caleulation provides the correct answer, in contrast o the ambiguous computer results

in Example 8, L]

We cannot always algebraically resolve the problem of finding the limit of a quotient
where the denominator becomes zero. In some cases the limit might then be found with the




¥ aid of some geometry applied to the problem (see the proof of Theorem 7 in Section 2.4),
or through methods of caleulus (illustrated in Section 7.5). The next theorem is also
useful,

The Sandwich Theorem

The following theorem enables us to caleulate o variety of limits. It is called the Sandwich
Theorem because it refers to a function f whose values are sandwiched between the values
& ¢ Of two other functions g and & that have the same limit L at a point ¢, Being trapped be-
‘ tween the values of two functions that approach L, the values of f must also approach £
(Figure 2.12). You will find a proof in Appendix 4.

FIGURE 2.12 The graph of [ is
sandwiched between the graphs of g and #.

THEOREM 4—The Sandwich Theorem Suppose that g(x) = flx) = hx) for
all x in some open interval containing ¢, except possibly at x = ¢ itself. Suppose
also that

lim gix) = lim hix) = L,

=y T

Then limy—, flx) = L,

The Sandwich Theorem is also called the Squeeze Theorem or the Pinching Theorem.

EXAMPLE 10  Given that

1 : ' | - '—"'Il = lx) 1 + '—"'I: for all x # ()
- : wy) = or all x .
] i | 4 2
FIGURE 2,13 Any function w(x) whose Finel Timy g wlx ), no matter how complicated w15,

graph lies in the region between )
y=1+(x*2)andy = | = (x*/4)has  Solution  Since
limit | a8 x = 0 (Example 1),

Iilr}r{l = (x¥4)) = 1 and Iin}lll + (x¥2)) =1,
XIr— i

. the Sandwich Theorem implies that lim, g wlx) = 1 {Figure 2.13). |
yove=lol
v m sl @ EXAMPLE 11  The Sandwich Theorem helps us establish several important limit rules:
L !
{a) lim sing = 0 (b} lim cosd = |
o i e ] =]
- = : e il
ol {¢) For any function f, lim |ft.1]| O implies lim fix) = 0.
-l woo =l r=*e ==
Solution
ia) (a) In Section 1.3 we established that =|#] = sind = [#] Tor all # (see Figure 2.14u),

Since limg—g(—|8]) = limgp |0 = 0, we have

lim sin g = 0,
R

(b) From Section 1.3, 0 = | = cos = |@] for all & (see Figure 2.14b), and we have

| = cos 8 limg—g (] = cos @) = Oor

[}

=2 =1 0 I 2
lim cosd = |,
h fl=sl)
FIGURE 2.14 The Sandwich Theorem () Since =|f(x}] = flx) = |flx}| and =[f(x)] and |f(x)] have limit 0 as x—> ¢, it

confirms the limits in Example 11, follows that Tim,—, fix) = 0. [




Another important property of limits is given by the next theorem. A proof is given in
the next section,

THEOREM 5 If flx) = gix)forall ¥ insome open interval containing ¢, except
possibly at v = ¢ itself, and the limits of § and g both exist as v approaches ¢,
then

lim flx) = lim g#ix).
"

p = 1

The assertion resulting from replacing the less than or equal to (=) inequality by the
strict less than (<0) inequality in Theorem 5 is false, Figure 2,140 shows that for 8 # (),
—|0] < sin® < |0, but in the limit as & — 0, equality holds.




DIFFERENTIATION

3 1 | Tangents and the Derivative at a Point
-

In this section we define the slope and tangent to a curve at a point, and the derivative
of a function at a point. Later in the chapter we interpret the derivative as the instanta-
neous rate of change of a function, and apply this interpretation to the study of certain
types of motion,

y Finding a Tangent to the Graph of a Function
¥ i)

To find a tangent to an arbitrary curve v = f{x)ata point Plag, flxg)), we use the procedure
introduced in Section 2.1, We caleulate the slope of the secant through 2 and o nearby point
(g + h, flxg + ). We then investigate the limit of the slope as i — 0 (Figure 3.1). If the
limit exists, we call it the slope of the curve at P and define the tangent at P to be the line
through P having this slope.

Chxg + by fleg + b1

filxg + W)= flagh

P, fagh

h T ---1
] I
- 4 —l - DEFINITIONS The slope of the curve v = flx) at the point Plag, flag)) is the
o ! number
FIGURE 3.1 The slope of the tangent {xg + 1) = filxg)
Jlxg + h) = fixg) m = ]im'IIr 2 fxo iprovided the limit exists),
line at 2 is lim — f=sli h
J==1) ]
The tangent line to the curve at P is the line through P with this slope.

In Section 2.1, Example 3, we applied these definitions to find the slope of the
parabola f(x) = x”at the point P(2, 4) and the tangent line to the parabola at P, Let's look
at another example.




|
Y=

slope 18 -l,

w

slope is <1
my o=~

FIGURE 3.2  The tangent slopes, steep
near the origin, become more gradual as
the point of tangency moves away
(Example 1).

1
slope is - 3

slope is -%

FIGURE 3.3 The two tangent lines to
¥ = 1/x having slope =1 /4 (Example 1).

EXAMPLE 1

()

(b)
(¢)

Find the slope of the curve v = 1/x atany point x = a # 0. What is the slope at the
pointx = =17

Where does the slope equal —1/4?

What happens to the tangent to the curve at the point (a, 1/a) as a changes?

Solution

()

(b)

()

Here f(x) = 1/x. The slope at (a, 1/a) is

| |
i fla + k) = fla) i ath a i 1a = (a+h)
Mool h L h S h ala + h)
= lim ——2— = |im ——— = -1
=0 hata + h) k=0 ala + h) a?

Notice how we had to keep writing “lim,.q" before each fraction until the stage
where we could evaluate the limit by substituting & = 0. The number @ may be posi-
tive or negative, but not 0, Whena = ~ |, the slope is =1 /(=1 )* = 1 (Figure 3.2).
The slope of v = 1/x at the point where x = a is —1/a”. It will be —1/4 provided
that

s
21—

This equation is equivalent to ¢* = 4,80 @ = 2 or @ = ~2. The curve has slope
=1 /4 at the two points (2, 1/2) and (=2, =1/2) (Figure 3.3).

The slope —1/a’ is always negative if @ # 0. As a = 0", the slope approaches — 0o
and the tangent becomes increasingly steep (Figure 3.2). We see this situation again as
a =07, As a moves away from the origin in either direction, the slope approaches 0
and the tangent levels off to become horizontal. -

Rates of Change: Derivative at a Point

The expression

f(.\'q + h) - f(.\'n)

W , h#0

is called the difference quotient of f at x with increment & 11 the difference quotient
has a limit a8 it approaches zero, that limit is given a special name and notation,

DEFINITION

The derivative of a function fat a point vy, denoted [, 8

provided this limit exists,

oo Sl R = flag)
fgy = M}I i

1T we interpret the difference quotient as the slope of o secant line, then the deriva-
tive gives the slope of the curve v = flx) al the point Plag, fivg)). Exercise 31 shows




that the derivative of the linear function f(x) = mx + b atany point xq is simply the slope
of the line, so

fvg) = m,

which is consistent with our definition of slope.

If we interpret the difference quotient as an average rate of change (Section 2.1), the
derivative gives the function’s instantancous rate of change with respect to x at the point
X = xg. We study this interpretation in Section 3.4,

EXAMPLE 2 In Examples | and 2 in Section 2.1, we studied the speed of a rock falling
freely from rest near the surface of the carth, We knew that the rock fell v = 16¢° feet dur-
ing the first ¢ sec, and we used a sequence of average rates over increasingly short intervals
to estimate the rock's speed at the instant ¢ = |, What was the rock’s exact speed at this
time?

Solution ~ We let f(r) = 1612, The average speed of the rock over the interval between
t= landr = | + hseconds, for i = 0, was found to be

SO+ h) = f(1) 1601 + h)? = 1601 16(h* + 2h)

W i = i = 16(h + 2).
The rock’s speed at the instant £ = 1 is then
'!i_rn) 16(h + 2) = 16(0 + 2) = 32 fi/sec.
Our original estimate of 32 ft/ sec in Section 2.1 was right, 2]

Summary

We have been discussing slopes of curves, lines tangent to a curve, the rate of change of a
function, and the derivative of a function at a point, All of these ideas refer to the same
limit.

The following are all interpretations for the limit of the difference quotient,

f‘[-\'u + h) = ﬂ-"-'n]
[1m ,
=il h

1. The slope of the graph of v = flxlatx = xy

2, The slope of the tangent to the curve v = flx)atx = xy
3. The rate of change of fix) with respect tox at x = xy

4. The derivative fxg) at a point

In the next sections, we allow the point vy to vary across the domain of the function f.




3.2 | The Derivative as a Function
L]
|

Historical Essay

The Derivative
y = f(x)
Secant slope is
z2) = f(x)
Q1) T=x
Py i) Sz = fix)
T |
b= 2 = a
| )
- .
X “x4+h

Derivative of fat x is
e 4 AY = 10
{x) = lim detm = iy ) = /)
bl h

J2) = fix)

= lim =T

sy

FIGURE 3.4 Two forms for the difference
quotient.

Derivative of the Reciprocal Function

_d_(l -
dx \X L

x20

In the last section we defined the derivative of v = flx) at the point ¥ = xy to be the limit

Tiwg + h) = flaxg)
; .

We now investigate the derivative as a function derived from f by considering the limit at

Fixg) = ah_'l}p

cach point x in the domain of f.

DEFINITION  The derivative of the function f{x) with respect to the variable x is
the function f* whose value at v is

N L e R 53

fx) = J!l—mz h '

provided the limit exists,

We use the notation f(x) in the definition to emphasize the independent variable x
with respect to which the derivative function f'(x) is being defined. The domain of /" is
the set of points in the domain of f for which the limit exists, which means that the domain
may be the same as or smaller than the domain of f. If /' exists at a particular x, we say
that [ is differentiable (has a derivative) at x. [f /" exists at every point in the domain of
fowe call [ differentiable.

Ifwe write z = x + A, thenh = z = xand h approaches O if and only il z approaches
x. Therefore, an equivalent definition of the derivative is as follows (see Figure 3.4), This
formula is sometimes more convenient to use when finding a derivative function.

Alternative Formula for the Derivative

J(z) = fix)

e =X

[{x) = lim

Calculating Derivatives from the Definition

The process of caleulating a derivative 18 called differentiation. To emphasize the idea
that differentiation is an operation performed on a function v = f(x), we use the notation

%I(.\‘)

as another way to denote the derivative f'(x). Example | of Section 3.1 illustrated the dif-
ferentiation process for the function v = 1/x when x = a. For x representing any point in
the domain, we get the formula

& i b B

dv\ X ga

Here are two more examples in which we allow x to be any point in the domain of f.

EXAMPLE 1  Differentiate f(x) = ——

=]

Solution  We use the definition of derivative, which requires us to calculate f(x + /) and
then subtract f(x) to obtain the numerator in the difference quotient, We have

ek . _ (e h) :
J&) =7 and flx + k) = T80
(x + h) = flx
[‘(" = ‘!i—m'w Defaition




y+h x
= lim r+ h=1 x-=1
==l h
- i 1_.{.-:+ML1'—H—.:."[.v.'+.fi—H @ _ ¢ _ ad=ch
Y (x + h= 1)x = 1) bTdT T b
- | =i

J!J—:HJF. ix+h=1Hx=1) Simplify

Cangel b # O

o -1 -l
i Yy ey prpp el e

EXAMPLE 2
(a) Find the derivative of f(x) = Vi forx > 0

(b) Find the tangent line to the curve v = Viyaty = 4,
Solution
‘ Derivative of the Square Root (a) We use the alternative formula to caleulate [
Function
f(z) = flx)
"x) = lim =——m——
:‘I_Irvf-t-'-‘-# x>0 / gz =8
: 2N
' V=V
= lim ===
a=sx
= lim Vi - Vi
; =1 (VE = VR)(VE + VA)
yedyvai = lim e N T ™= ,
4 ey \/:- + \/\- 2\/;
\ (b) The slope of the curve at x = 4 is
4,2 y=Vx , I
-+ f4)=—==<.
2Va 4
l 1 L 1 1 X
¢ ’ The tangent is the line through the point (4, 2) with slope 1/4 (Figure 3.5):
FIGURE 3.5 The curve v = Vi and its y=24 %t,\- - 4)
tangent at (4, 2), The tangent’s slope is
found by evaluating the derivative at x = 4 P o= l‘ + 1. -
e )
(Example 2).
Notations

There are many ways to denote the derivative of a function y = f(x), where the independ-
ent variable is x and the dependent variable is v. Some common alternative notations for
the derivative are

' ’ d.v df d
filx) =y = b i i m,[(.\') = D{(f)x) = D, f(x).

The symbols d/dv and D indicate the operation of differentiation. We read dy/dx as
“the derivative of y with respect to x,” and df /dxv and (d/dx)f(x) as “the derivative of f
with respect to x.” The “prime” notations y" and f' come from notations that Newton
used for derivatives. The d/dx notations are similar to those used by Leibniz, The sym-
bol dv/dx should not be regarded as a ratio




Differentiable Functions Are Continuous

A function is continuous at every point where it has a derivative,

THEOREM 1—Differentiability Implies Continuity If f has a derivative at
x = ¢, then fis continuous at ¥ = ¢.

Froof Given that f'(¢) exists, we must show that lim, . flx) = fle), or equivalently,
that limg—p fle + &) = fle). IFR # 0, then

He+ k= fley + (fle + h) = fle))
= flc) + fle + hlr: = fle) "

MNow take limits as i — 0, By Theorem | of Section 2.2,

s+ k= Jle
flet W= fe)

' . — s ) 4 i
fim e + 1) = Jim ) + i === fim

= fle) + file)-0
= fle) + 0

= flel

3 3 | Differentiation Rules

(¥, )

This section introduces several rules that allow us to differentiate constant functions,
power functions, polynomials, rational functions, and certain combinations of them, sim-
ply and directly, without having to take limits each time.

Powers, Multiples, Sums, and Differences

A simple rule of differentiation is that the derivative of every constant function is zero.

Derivative of a Constant Function
(x+ h )

y=¢ If f has the constant value flx) = ¢, then

af —d
e dx[d_u'

=

1]

FIGURE 3.9 The rule (d/dsdc) = O is

[P T —

Rl S s |

I

H

Proof We apply the definition of the derivative to flx) = ¢, the function whose outpuls

another way to say that the values of have the constant value ¢ (Figure 3.9). At every value of x, we find that
constant functions never change and that

the slope of a horizontal line is zero at

every point,

R (. Bl 1 ) I
flix) = ;}Tn—fr = lim

= lim0 = (. ]
A=) b=

From Section 3.1, we know that




Historical Biocrariy

Richard Courant
{IBBR-1972)

From Section 3,1, we know that

d (1 I di . B
E(T) = _-1__“ or Il'rl |]| = —y~°,

From Example 2 of the last seetion we also know that

=1/

d (4 /" d I
—(Vx)=—=, o (.ﬁ""‘J =
dx 2y dv 2
These two examples illustrate a general rule for differentiating a power x". We [irst prove
the rule when n is a positive integer.

Power Rule for Positive Integers:
If it is a positive integer, then

Proof of the Positive Integer Power Rule The formula
:.II — .'l.'" — :: — I}::n—l o :n—.'.'l. e sii o :_.'..rr—.'.' + .'I.'"_I:|

can be verified by multiplying out the right-hand side. Then from the alternative formula
for the definition of the derivative,

(z) = flx) [
filxy = lim % = lim =+~

im0 + 2" 4o 4 2T 4 T i terms

2=

= ax"" | i ™




Power Rule (General Version)
If i is any real number, then

— " = py"]

dx !

for all x where the powers 1" and "~ are defined.

EXAMPLE 1  Differentiate the following powers of x.

{l] 1.3 {_h] 1..2-'.’1 {e) x VI {d_} lq,' {E} _l.—'i.-".'- {f] ) ."_.L.ElTr
X

Solution

@ e =0T =3 @) L = 200 = 200
d 5 e dil d . - == -5 4
A4y _4 - _ 4

{E] v E-'I' .} 3 X 3 x
Nia Tray — (1w Ty -1 — 1 7

(n a’.r{ ¥ = (s J=(1+T)k =32+ MV u

The next rule says that when a differentiable function is multiplied by a constant, its
derivative is multiplied by the same constant,

Derivative Constant Multiple Rule

If u is a differentiable function of &, and ¢ is a constant, then
dir

i[ml =p—

dx dv’

In particular, if # is any real number, then

i vl = n=1
dx{(.x} oy,

Proof
d . culx + h) = culx) Derivative delimition
=S-cu = im
dy h—0 h with fix) = culx)
ulx + h) = ulx)
= e nn - Constunt Multiple Limit Property
h—0 h ‘
- L% u 15 difterentiable. n
EXAMPLE 2

(a) The derivative formula
T T W S,
dr‘}" ) = 3:2x = 6x

says that if we rescale the graph of ¥ = x? by multiplying each y-coordinate by 3, then
we multiply the slope at cach point by 3 (Figure 3.10).




’Eﬂinu Functions by o and v

The functions we are working with when
wie need a differentiation formula are
likehy to be denoted by letters like fand g,
We do not want to use these same letters
when stating general differentiation rules,
s0 we use letters like w and v instead that
are not likely to be already in use.

{b) Megative of a function
The derivative of the negative of a differentiable function u is the negative of the func-

tion’s derivative, The Constant Multiple Rule with e = —1 gives
d _d o d _ i
u’x[ u) = u’.t.'[ beu) == d.t'““} - dx’ -

The next rule says that the derivative of the sum of two differentiable functions is the
sum of their derivatives.

Derivative Sum Rule

It 1 and v are differentiable functions of x, then their sum u + v 15 differentiable
at every point where u and v are both differentiable. At such points,

o _du _ dv
d.r:" + u) e + o

For example, if v = o 4 12x then v is the sum of w(x) = " and vix) = 12v. We
then have

dv _d oy d P
o dr [x™) + u,rﬂ]lt} = dx* + 12

Proof We apply the definition of the derivative to flx) = ulx) + wvix):

[lx + k) + vix + £)] — [ulx) + wix)]

d—"i [al(x) + wix)]

= lim
h—D h
wla + h)— wlx) wvix + k) — wlx)
- +
h==D i h
- ulx + k) — arlx) " vix + h) —vlx) e du
b h b h I dx

Combining the Sum Rule with the Constant Multiple Rule gives the Difference Rule,
which says that the derivative of a difference of differentiable functions is the difference of
their derivatives:

d o it dv _ du dv
— -— — + — — - [ —
dx (u = v) oy [+ (=] a T n de dx o oax’
The Sum Rule also extends to finite sums of more than two functions, If
LTI T i, are differentiable at x, then sois &) + ws + -+« + 1y, and
duy du- du,,

d
c.h'ml+u2 *o k) = dx + dx T dr”

For mstance, to see that the rule holds for three functions we compute

d ! { duy  dwy dun dus
E[m + uy + o) = r.:’TH'uI + )+ owa) = ;Tl:iu + wuz) + I = F-I— I + T




EXAMPLE 3  Find the derivative of the polynomial v = x* + %x"‘ — Sx + 1,

Hl_l' ,|'_!1 3 I'Jr 4 ¥ d ﬂr -
Solution E = E_\_ + I E_‘l. - II:-S_\:I + E{I} Sum and Difference Rules

=3.1"!+%-2.1.—5+{}=3.r3+%.:;—5

EXAMPLE 4  Does the curve v = x* — 2v* + 2 have any horizontal tangents? If so,
where?

Solution  The horizontal tangents, if any, occur where the slope dv/dy is zero. We have

dv  d

W _d 4 a2 oy = oA oay
O ix 2x 2y = dx 4x,

»
Mow solve the equation ﬁ = 0 for x:

4! —dx =0
dvixi =11 =10
x=0,1.-1.

The curve y = x* — 2¢* + 2 has horizontal tangents at x = 0, 1, and —1. The corre-
sponding points on the curve are (0L 2), (1. 1) and (=1, 1). See Figure 3.11. We will see in
Chapter 4 that finding the values of x where the derivative of a function is equal 1o zero is
an important and useful procedure, [

Products and Quotients

While the derivative of the sum of two functions is the sum of their derivatives, the deriva-
tive of the product of two functions is nof the product of their derivatives, For instance,

d oo : doved -1 =
i x) I (x°) = 2, while T (x) d.!.'{ﬂ 1«1 =1.

The derivative of a product of two functions is the sum of fwe products, as we now explain.

Derivative Product Rule
If & and v are differentiable at x, then 50 is their product ww, and

ihm} = uE + uﬂ

dx dx e’

The derivative of the produet ww is u times the derivative of v plus v times the deriva-
tive of w. In prime notation, (uv)' = we' + v’ In function notation,

ﬁ[f{.r}lg{.r}l] = flalg'lx) + glx)fix).
EXAMPLE 5  Find the derivative of ¥ = (x* + 1){x* + 3).

Solution

(a) From the Product Rule with = x* + land v = x* + 3, we find

d—‘i[(_rl + D+ 3)] = (6 + DGR+ (o + 3)(20) St = v

3t 4+ 3?4+ 2t 4+ A
Set 4 3t 4 ey




{b) This particular product can be differentiated as well (perhaps better) by multiplying
out the original expression for v and differentiating the resulting polynomial:

y=x?+ Nx*+3N=x+x"+ W+ 3

dv .
— = 5x* + 3n? + 6a,
dx
This is in agreement with our first calculation. ]

Proof of the Derivative Product Rule

wlx + hlx + b)) — wixielx)
h

d .
ac () = Jim

To change this fraction into an equivalent one that contains difference quotients for the de-
rivatives of u and v, we subtract and add wix + hjwix) in the numerator:

d ulx + hvix + k) — wix + hvix) + wlx + heix) — wlxhvix)
—luv) = lim
HI.T k—0 h
. vy + R) — wlx) wx + ) - ulx)
= a,].T}; ulx + MT + vix) -
|:.'+fi - {_' .+|i'!:|— {_.
= ]imufx + i)+ lim l"‘l—]'b"l} + L.:_._.}. lim u
fr—0 =0 h Fasie A

As b approaches zero, ulx + &) approaches wlx) because u, being differentiable at x, is con-
tinuous at v, The two fractions approach the values of dv/dx at x and dw/dy at x, In short,

iwv} = uﬁ + du [ |

dx ax Ve

The derivative of the quotient of two functions is given by the Quotient Rule.

Derivative Quotient Rule

If o and v are differentiable at x and if v{x) # 0, then the quotient /v is differ-
entiable at x, and

In function notation.,

d [ﬂ-‘f]] _glx)lf'(x) = flx)g'(x)
de |gl(x) ] 2(x) '

=1
et b

EXAMPLE 6  Find the derivative of ¢ =

Solution  We apply the Quotient Rule withw = ¢ — landv = ' + 1:

dy (4 120 — (2= 1)-307 ey vl = wldufdi
dr (e + 1) '

2t 4 20— 3t + 32
(i + 1)°
_ 3+ u
(0 + 1)




Proof of the Derivative Quotient Rule
wlx + Ff) tlx)

d E) iy 2+ ) )
dx \V &EL ]
vixhmlx + B — wixwlx + 0

fn, nolx + A)ulx)

To change the last fraction into an equivalent one that contains the difference quotients for
the derivatives of w and v, we subtract and add wix)u(x) in the numerator. We then get
vlxdly + B) — vixvhlx) + wixhlx) — wixhdy + &)

< (ﬁ) = lim
de WV =1 hulx + hhlx)
wix + k) — wix) vix + k) — wix)
wlx) T — alx) T
tx + fux)
| ]

lim
k=01

Taking the limits in the numerator and denominator now gives the Quotient Rule.
The choice of which rules to use in solving a differentiation problem can make a dif-
ference in how much work you have to do. Here is an example.

EXAMPLE 7 Rather than using the Quotient Rule to find the derivative of

_ (v — iz = 2v)

x*

expand the numerator and divide by x*:
SRR T S L

(x — Ix? — 2x) 4% — 352 + 2y
- = n =3
x

¥
- 4
X

Then use the Sum and Power Rules:

dy )
;T: = —x7 = 32077 + 23"
| 6 _ 6




INTEGRATION

DEFINITION  If v = fix) is nonnegative and integrable over a closed
interval [a@, A]. then the area under the curve y = fx) over |a, #] is the

integral of f from a tw b,
1]
o= [

DEFINITION  If f is integrable on [a, #], then its average value on [a, b], also
called its mean, 15

T
av(f) = 72— [ f(x) dv.

The Fundamental Theorem of Calculus

THEOREM 3 —The Mean Value Theorem for Definite Integrals If f is continu-
ous on [a, 5], then at some point ¢ in [a, b],

vh
0= 5 [ ax

EXAMPLE 1  Show that if f is continuous on [a. b, @ # b, and if

‘b
/ f(x)dx = 0,

then f(x) = 0 at least once in [a, b].

Solution  The average value of f on [a, b] is

Il
L ) AT Sae g
av(f) = h—u_[ fx) dx e 0=100.

By the Mean Value Theorem, f assumes this value at some point ¢ & [a, b].




THEOREM 4—The Fundamental Theorem of Calculus, Part 1 If / is continuous
on [a, b), then Flx) = f,: f(t) dt 1s continuous on [a, b] and differentiable on (a, b)
and its derivative is f(x):

F'(x) = %/ fydi = f(x), @)

Before proving Theorem 4, we look at several examples to gain a better understanding
of what it says. In each example, notice that the independent variable appears in a limit of
integration, possibly in a formula.

EXAMPLE 2 Use the Fundamental Theorem to find dy/dx if

X 5 c
(a) v —/ (' + 1) dt (b) v = / 3tsingdi (¢) v = / cos f dt
Ja X JI

Solution  We calculate the derivatives with respect to the independent variable x.

d.". = d " 3 W =

(a) :i; - z;‘[ (, + l)d’ =x | Fa. (2) with ftr) Fr B a
dy — (’ S - . d * - )

(b) a - dx . tsintdt = e o : 3tsintdt Table 5.4, Rule |

=—i/ 3¢sint dt
dx [s

= —3xsinxy Eq. (2) with f(r) = Jrsing

(¢) The upper limit of integration is not x but x*. This makes v a composite of the two
functions,

"
y= / cos { dt and u=x?
J

We must therefore apply the Chain Rule when finding dy/dx.

dv dy du

dx  du dx

o M N
= (du | wstdl) -

= CcoSu * du
’ dx

cos(x?)+ 2x

hl
2y cosx* ]

I

THEOREM & (Continued)—The Fundamental Theorem of Calculus, Part 2 If f is
contimuous at every point in [a, b] and F 18 any antiderivative of f on [a, ], then

i1

flx)de = Fih) — Fla).

i




EXAMPLE 3 We calculate several definite integrals using the Evaluation Theorem,
rather than by taking limits of Riemann sums,

(a) [ cosxdy = sinxJ sinE = ¢os
S [}] (LR
=snmT —snl=0—-0=10
L] il )
(b} f secvianx dy = .t:eu;:x] = sec¥ = secyny
_;u-..'4 _w.l.l_q (rhY

=5:::{]—:41:::(—%)= | = ‘-.»'5

Id ﬂ N 1
() / (% VX = i,) dy = [1"1-"3 + T] L4 2 ;.' -—
| X * il ! .

_ o 4| 3. 4
[14} +4] [H} + ]]

= [8 + 1] = [5] = 4. n

Exercise 66 offers another proof of the Evaluation Theorem, bringing together the
ideas of Riemann sums, the Mean Value Theorem, and the definition of the definite
integral,

I

THEOREM 5-—The Net Change Theorem  The net change in a function F(x) over
an interval @ = x = b is the integral of its rate of change:

h
Fib) = Fla) = / F'(x) dx. (6)

EXAMPLE 4  Here are several interpretations of the Net Change Theorem.,

(a) If efx) is the cost of producing x units of a certain commodity, then ¢'(x) 18 the mar-
ginal cost (Section 3.4). From Theorem 5,

/ e'(x)dy = elxa) = elxy),

which is the cost of increasing production from x; units 10 x> units,

(b) If an object with position function s(/) moves along a coordinate line, its velocity is
u(r) = s'(¢). Theorem 5 says that

oy
/ vit)dt = s(ta) — s(ty),
n
s0 the integral of velocity is the displacement over the time interval | = ¢ = 5, On
the other hand, the integral of the speed |v(¢)| is the total distance traveled over the
time interval, This is consistent with our discussion in Section 5.1, 3]

If we rearrange Equation (6) as

b
F(b) = Fla) + / F'(x) dy,




Summary:

To find the area between the graph of v = f(x) and the x-axis over the interval
[a, b):

1. Subdivide [, b] at the zeros of f.

2. Integrate f over each subinterval,

3. Add the absolute values of the integrals,

EXAMPLE 8  Find the area of the region between the x-axis and the graph of
f)=x' =P =2, ~1 =x =2

Solution  First find the zeros of /. Since

flx) = M=t =2 =l = x = 2) =l 4+ Dix = 2),

the zeros are v = 0, =1, and 2 (Figure 5.22), The zeros subdivide [—1, 2] into two subin-
tervals: [—1, 0], on which f = 0, and [0, 2], on which [ = 0, We integrate [ over each
subinterval and add the absolute values of the caleulated integrals,

0
[{.1‘1'—.1': = 2x) ey
J=1

: 4 :

A _ade = XX Al a8 _aul_n=_8
j:{.m ¥ = 2x) ey [4 3 _q:| [.4 7 4:| 0 3

The wial enclosed area is obtained by adding the absolute values of the calculaied
integrals,

|
r—
=)=
-
e -
-

T
—
|
=
I
i
a|—
+
|
I
PE—
|
[

A Bl _ 37
Total enclosed area = 3 + ‘ 3‘ 2 [




Substitution: Running the Chain Rule Backwards

IF is a differentiable function of x and # is any number different from —1, the Chain Rule

tells us that
(" “.-l‘ﬂ
de \n o+ i

From another point of view, this same equation says that o
derivatives of the function u"(du/dy). Therefore,

wll

A+ 1) is one of the anti-

' mtl
/u"%u’.u u”TI b (1)

The integral in Equation (1) is equal to the simpler integral

' at |
u' du = = +
. n+ |l !

which suggesis that the simpler expression an can be substituted for (du/dx) dv when
computing an integral, Leibniz, one of the founders of caleulus, had the insight that indeed
this substitution could be done, leading wo the substinntion method for computing integrals,
As with differentials, when computing integrals we have

di = %:a’.r.
EXAMPLE 1 Find the integral [lﬁ.\" + 237 + 1) dv.

Solution Wesetw = x* + x. Then

i J—!f:h (3x® + 1) d,

aly
g0 that by substitution we have
/1.1."1 + x4 1) dy = [:r‘*:-‘u Loty = &' + x,du = (3! + 1)
T .
= F + ( ltegrrang '.I.|'|||.'-|||.II|:.|

(x? + x)° + C

e Substigie 17+ x for o

3 | Tii | | ]

EXAMPLE 2 r-'ind/ W2+ 1,

Solution  The integral does not fit the formula

f u" di,




withsw = 2x + land n = 1,2, because

;m—%m—zm

is not precisely dx. The constant factor 2 is missing from the integral, However, we can in-

troduce this factor after the integral sign i we compensate for it by a factor of 1/2 in front
of the mtegral sign. So we write

IVn+1m—%/VM+|qﬂ

- %_/ w''? Lotw = 2v + I, du

12
- 'é-:? t 'f' Integrmte with respsct 160 i
- l‘tl’-\' + 1P+ ¢ Substinute 2y fisr 1 n

The substitutions in Examples | and 2 are instances of the following general rule,

THEOREM &—The Substitution Rule Ifw = gix) s a differentiable function
whose range is an interval £, and f is continuous on /, then

/ﬁm.t‘}}g'{.t‘hh [}m} i,

Proof DBy the Chain Rule, Fglx)) is an antiderivative of f{g{x)) g (x) whenever #is an
antiderivative of f;

iﬂ;{l.r” = Fplx)) e glix) Chain Rule

dx

= flalx)) g lx) F'ow

IF we make the substitution i = gix), then

-/ﬂg[.r]]g'u'iu’.r /%Fl;:[.u'}] e

- f’l‘jif.'l']'} + O Fundamental Theoren

= Fu) + C 0= gl

= /f"‘tﬂ]bﬁf Fundamental Theorem

- /ﬁu]u’u Fo= =

The Substitution Rule provides the following substitution method 1o evaluate the integral

[ Sl ' () dly,
when [ and ¢ are continuous functions:

1. Substinwie s = glx)and du = (dufay) de = g'{x) dv w obin the integral

] Sae) du.




2. Integrate with respect to .
3. Replace v by g(x) in the result.

EXAMPLE 3 Find /scc“!Sl + 1) 5d.

Solution  We substitute = 5t + 1 and du = 5 dr. Then,

/scc"’(Sl A 1)+ Sdt = /sccz udu Lotw = 8 & odu = St
= tanu + C :Y: an i o U
=un(St+ 1)+ C Substituie 5 + | for u ™

EXAMPLE 4  Find /cus(?(} + 3) do.

Solution  We let w = 760 + 3 so that du = 7 df. The constant factor 7 is missing from
the dO term in the integral. We can compensate for it by multiplying and dividing by 7,
using the same procedure as in Example 2, Then,

/L’OS‘?” + 3)do = 'l- / cos (70 + 3)+7db Place factor 1/7 In frone of integr

7 -
1 , :
=5 [ cosu du Lety = 70 + 3, du o)
1 . .
7.\mu + ( Integrate
- ':I]'.\'in"m +3)+ C Substitute 70 + 3 for u

There is another approach to this problem, With v = 70 + 3 and du = 7 d0 as be-
fore, we solve for db) to obtain d6 = (1/7) du. Then the integral becomes

/cus(?l) + 3)do = /cusw-%du Lotu =70+ N du = Td0, and do = (1/7) du

=sinu + C Integme

)

= -.lisin (70 + 3) + C Substitute 70+ 3 for u

We can verify this solution by differentiating and checking that we obtain the original
function cos (70 + 3), [




