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Chapter One 

Topological Spaces 

 
Definition: Let 𝑋 be a non-empty set and let 𝜏 be a collection of subsets of 𝑋 satisfying the 

following three conditions: 

(i) 𝜙 ∈ 𝜏, 𝑋 ∈ 𝜏. 

(ii) If 𝐺1 ∈ 𝜏 and 𝐺2 ∈ 𝜏, then 𝐺1⋂𝐺2 ∈ 𝜏. 

(iii) If 𝐺𝜆 ∈ 𝜏 for every 𝜆 ∈ Λ where Λ is an arbitrary set, then ⋃{𝐺𝜆: 𝜆 ∈ Λ} ∈ 𝜏. 

Then 𝜏 is called a topology for 𝑋, the members of 𝜏 are called 𝜏-open (or simply open) sets 

and the pair (𝑋, 𝜏) is called a topological space. The elements of 𝑋 will be called points of the 

space. 

 

Remark: The union of empty collection of sets is empty. i.e  ⋃{𝐴𝜆: 𝜆 ∈ 𝜙} = 𝜙 and the 

intersection of empty collection of subsets of 𝑋 is 𝑋 itself. i.e ⋂{𝐴𝜆: 𝜆 ∈ 𝜙} = 𝑋. 

 

Remark: The three conditions (i), (ii) and (iii) are equivalent to the following two conditions:  

(1) The intersection of an arbitrary finite number of open sets is open. 

(2) The union of arbitrary collection of open sets is open. 

 

Example: Let 𝑋 = {𝑎, 𝑏, 𝑐} and consider the following collections of the subsets of 𝑋: 

𝜏1 = {𝜙, 𝑋}, 

𝜏2 = {𝜙, {𝑎}, {𝑏, 𝑐}, 𝑋}, 

𝜏3 = {𝜙, {𝑎}, {𝑏}, 𝑋},  

𝜏4 = {𝜙, {𝑎}, 𝑋},  

𝜏5 = {𝜙, {𝑎}, {𝑏}, {𝑎, 𝑏}, 𝑋},  

𝜏6 = {𝜙, {𝑎, 𝑏}, 𝑋}, 

𝜏7 = {𝜙, {𝑏}, {𝑎, 𝑏}, 𝑋}, 

𝜏8 = {{𝑎}, {𝑏, 𝑐}, 𝑋},  

𝜏9 = {𝜙, {𝑎}, {𝑏}, {𝑎, 𝑏}}, 

𝜏10 = {𝜙, {𝑎, 𝑏}, {𝑏, 𝑐}, 𝑋}. 

Then 𝜏1, 𝜏2, 𝜏4, 𝜏5, 𝜏6 and 𝜏7 are all topologies for 𝑋, since they satisfy all the conditions (i), 

(ii) and (iii). 

Let us verify these axioms for 𝜏7. 

(i) 𝜙, 𝑋 ∈ 𝜏7 
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(ii) 𝜙⋂{𝑏} = 𝜙⋂{𝑎, 𝑏} = 𝜙⋂𝑋 = 𝜙 ∈ 𝜏7, {𝑏}⋂{𝑎, 𝑏} = {𝑏}⋂𝑋 = {𝑏} ∈ 𝜏7  

and {𝑎, 𝑏}⋂𝑋 = {𝑎, 𝑏} ∈ 𝜏7. 

(iii) 𝜙⋃{𝑏} = {𝑏} ∈ 𝜏7, 𝜙⋃{𝑎, 𝑏} = {𝑎, 𝑏} ∈ 𝜏7, 𝜙⋃𝑋 = 𝑋 ∈ 𝜏7, {𝑏}⋃{𝑎, 𝑏} = {𝑎, 𝑏} ∈ 𝜏7, 

{𝑏}⋃𝑋 = 𝑋 ∈ 𝜏7, {𝑎, 𝑏}⋃𝑋 = 𝑋 ∈ 𝜏7 and {𝑏}⋃{𝑎, 𝑏}⋃𝑋 = 𝑋 ∈ 𝜏7. 

𝜏3 is not a topology for 𝑋 since {𝑎} ∈ 𝜏3 and {𝑏} ∈ 𝜏3 but {𝑎}⋃{𝑏} = {𝑎, 𝑏} ∉ 𝜏3 and so it 

does not satisfy (iii). 

𝜏8 is not a topology for 𝑋 since 𝜙 ∉ 𝜏8 and so it does not satisfy (i). 

𝜏9 is not a topology for 𝑋 since 𝑋 ∉ 𝜏9 and so it does not satisfy (i). 

𝜏10 is not a topology for 𝑋 since {𝑎, 𝑏} ∈ 𝜏10 and {𝑏, 𝑐} ∈ 𝜏10 but {𝑎, 𝑏}⋂{𝑏, 𝑐} = {𝑏} ∉ 𝜏10 

and so it does not satisfy (ii). 

 

Example: Let 𝑋 be a non-empty set. Then the collection 𝐼 = {𝜙, 𝑋} consisting of the empty 

set and the whole space is always a topology for 𝑋 called the indiscrete (or trivial) topology. 

The pair (𝑋, 𝐼) is called an indiscrete topological space. 

 

Example: Let 𝑋 be a non-empty set and let 𝐷 be the collection of all subsets of 𝑋, the 𝐷 is a 

topology for 𝑋 called the discrete topology. The pair (𝑋, 𝐷) is called a discrete topological 

space. 

Solution: Since 𝜙 ⊆ 𝑋, 𝑋 ⊆ 𝑋, we have 𝜙 ∈ 𝐷 and 𝑋 ∈ 𝐷 so that (i) is satisfied, (ii) also 

holds since the intersection of two subsets of 𝑋 a gain a subset of 𝑋. Similarly (iii) is satisfied 

since the union of any collection of subsets of 𝑋 is a gain a subset of 𝑋. 

 

Example: Let 𝑋 be a non-empty set and let 𝜏 be the collection of all those subsets of 𝑋 whose 

complements are finite together with the empty set, that is, a subset 𝐴 of 𝑋 belongs to 𝜏 iff 𝐴 

is empty or 𝐴𝑐 is finite. Then 𝜏 is a topology for 𝑋 called the co-finite topology or the finite 

complement topology. 

Solution: (i) Since 𝑋𝑐 = 𝜙 which is finite, we have 𝑋 ∈ 𝜏. Also 𝜙 ∈ 𝜏 be definition. 

(ii) 𝐺1, 𝐺2 ∈ 𝜏 ⟹ 𝐺1
𝑐, 𝐺2

𝑐
 are finite  

                       ⟹ 𝐺1
𝑐⋃ 𝐺2

𝑐
 is finite  

                       ⟹ (𝐺1⋂ 𝐺2)𝑐 is finite [By De-Morgan law] 

                       ⟹ 𝐺1⋂ 𝐺2 ∈ 𝜏. 

(iii) 𝐺𝜆 ∈ 𝜏, ∀𝜆 ∈ Λ ⟹ 𝐺𝜆
𝑐 is a finite, ∀𝜆 ∈ Λ 

                                 ⟹ ⋂{𝐺𝜆
𝑐: 𝜆 ∈ Λ} is a finite  

                                 ⟹ [⋃{𝐺𝜆: 𝜆 ∈ Λ}]𝑐 is a finite [By De-Morgan law] 
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                                 ⟹ ⋃{𝐺𝜆: 𝜆 ∈ Λ} ∈ 𝜏. 

Hence 𝜏 is co-finite topology for 𝑋. 

 

Example: Let 𝑋 be a non-empty set and let 𝜏 be consist of all those subsets of 𝑋 whose 

complements are countable sets together with the empty set. Then 𝜏 is a topology for 𝑋 called 

the co-countable topology. 

 

Example: Let U consist of 𝜙 and all those subsets 𝐺 of ℝ having the property that to each 𝑥 ∈

𝐺 there exists 𝜀 > 0 such that (𝑥 − 𝜀, 𝑥 + 𝜀) ⊆ 𝐺. Then U is a topology for ℝ called the usual 

topology. 

Solution: (i) 𝜙 ∈ U by definition. Also ℝ ∈ U since for each 𝑥 ∈ ℝ, (𝑥 − 1, 𝑥 + 1) ⊆ ℝ. 

In fact for any 𝜀 > 0, (𝑥 − 𝜀, 𝑥 + 𝜀) ⊆ ℝ. 

(ii) Let 𝐺1, 𝐺2 ∈ U. If 𝐺1⋂ 𝐺2 = 𝜙, there is nothing to prove. 

If 𝐺1⋂ 𝐺2 ≠ 𝜙, let 𝑥 ∈ 𝐺1⋂ 𝐺2. Then 𝑥 ∈ 𝐺1 and 𝑥 ∈ 𝐺2. Hence there exist 𝜀1 > 0 and 𝜀2 >

0 such that (𝑥 − 𝜀1, 𝑥 + 𝜀1) ⊆ 𝐺1 and (𝑥 − 𝜀2, 𝑥 + 𝜀2) ⊆ 𝐺2. Take 𝜀 = 𝑚𝑖𝑛{𝜀1, 𝜀2}. Then 𝜀 >

0 and (𝑥 − 𝜀, 𝑥 + 𝜀) ⊆ 𝐺1⋂ 𝐺2. Hence 𝐺1⋂ 𝐺2 ∈ U. 

(iii) Let {𝐺𝜆: 𝜆 ∈ Λ} be an arbitrary collection of members of U and let 𝑥 ∈ ⋃{𝐺𝜆: 𝜆 ∈ Λ}. 

Then 𝑥 ∈ 𝐺𝜆 for some 𝜆 ∈ Λ. Since 𝐺𝜆 ∈ U, there exists 𝜀 > 0 such that (𝑥 − 𝜀, 𝑥 + 𝜀) ⊆ 𝐺𝜆. 

But then (𝑥 − 𝜀, 𝑥 + 𝜀) ⊆ ⋃{𝐺𝜆: 𝜆 ∈ Λ}. Therefore ⋃{𝐺𝜆: 𝜆 ∈ Λ} ∈ U. 

Hence U is a topology for ℝ. 

 

Example: Every open interval on ℝ is a U-open set. 

Solution: Let (𝑎, 𝑏) be any interval on ℝ and let 𝑥 ∈ (𝑎, 𝑏). Take 𝜀 = 𝑚𝑖𝑛{𝑥 − 𝑎, 𝑏 − 𝑥}. 

Then it is easy to see that (𝑥 − 𝜀, 𝑥 + 𝜀) ⊆ (𝑎, 𝑏). Hence (𝑎, 𝑏) is a U-open set. 

 

Example: Let 𝜏1 and 𝜏2 be the collections of subsets of ℝ defined respectively as follows:  

(1) 𝜙 ∈ 𝜏1, ℝ ∈ 𝜏1 and all open infinite intervals 𝐺𝑟 = (𝑟, ∞) with 𝑟 ∈ ℝ belong to 𝜏1. 

(2) 𝜙 ∈ 𝜏2, ℝ ∈ 𝜏2 and all open infinite intervals 𝐺𝑞 = (𝑞, ∞) with 𝑞 ∈ ℚ belong to 𝜏2. 

Then 𝜏1 is a topology for ℝ but 𝜏2 is not a topology for ℝ. 

Solution: (1) (i) 𝜙 ∈ 𝜏1 and ℝ ∈ 𝜏1 by definition.  

(ii) Let 𝐺𝑟 ∈ 𝜏1 and 𝐺𝑠 ∈ 𝜏1 with 𝑟, 𝑠 ∈ ℝ, 𝐺𝑟⋂𝐺𝑠 = 𝐺𝑟 𝑜𝑟 𝐺𝑠 according as 𝑟 ≥ 𝑠  𝑜𝑟  𝑟 ≤ 𝑠. 

Hence 𝐺𝑟⋂𝐺𝑠 ∈ 𝜏1. 

(iii) Let 𝐺𝜆 ∈ 𝜏1 for every 𝜆 ∈ Λ where Λ is some set of real numbers. We have to show that 

⋃{𝐺𝜆: 𝜆 ∈ Λ} ∈ 𝜏1. 

If Λ is not bounded below so that inf(Λ) = −∞, then ⋃{𝐺𝜆: 𝜆 ∈ Λ} = ℝ ∈ 𝜏1. 
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If Λ is bounded below so that inf(Λ) = 𝑟0(𝑟0 ∈ ℝ) exists, then ⋃{𝐺𝜆: 𝜆 ∈ Λ} = (𝑟0, ∞) = 𝐺𝑟0
. 

Hence in either case, ⋃{𝐺𝜆: 𝜆 ∈ Λ} ∈ 𝜏1. 

Therefore 𝜏1 is a topology for ℝ. 

(2) Let 𝐺𝑞 with 𝑞 ∈ ℚ belong to 𝜏2 for all 𝑞 > √2. Then ⋃{𝐺𝑞: 𝑞 ∈ ℚ, 𝑞 > √2} = (√2, ∞) 

which does not belong to 𝜏2, since √2 is not a rational number. Hence 𝜏2 is not a topology for 

ℝ. 

 

Example: Let 𝜏 be the collection of subsets of ℕ consisting of empty set and all subsets of ℕ 

of the form 𝐺𝑚 = {𝑚, 𝑚 + 1, 𝑚 + 2, … . . }, 𝑚 ∈ ℕ. Then 𝜏 is a topology for ℕ. 

 

Theorem: Let {𝜏𝜆: 𝜆 ∈ Λ} where Λ is an arbitrary set, be a collection of topologies for 𝑋. 

Then the intersection ⋂{𝜏𝜆: 𝜆 ∈ Λ} is also a topology for 𝑋. 

Proof: Let {𝜏𝜆: 𝜆 ∈ Λ} be a collection of topologies on 𝑋. We have to show that ⋂{𝜏𝜆: 𝜆 ∈ Λ} 

is also a topology on 𝑋. 

If Λ = 𝜙, then ⋂{𝜏𝜆: 𝜆 ∈ 𝜙} = 𝑃(𝑋). Thus in this case the intersection of topologies is the 

discrete topology. 

Now let Λ ≠ 𝜙. 

(i) Since 𝜏𝜆 is a topology for every 𝜆 ∈ Λ, it follows that 𝜙, 𝑋 ∈ 𝜏𝜆 for every 𝜆 ∈ Λ.  

But 𝜙 ∈ 𝜏𝜆 for every 𝜆 ∈ Λ ⟹  𝜙 ∈ ⋂{𝜏𝜆: 𝜆 ∈ Λ}, and 

𝑋 ∈ 𝜏𝜆 for every 𝜆 ∈ Λ ⟹  𝑋 ∈ ⋂{𝜏𝜆: 𝜆 ∈ Λ}. 

(ii) Let 𝐺1, 𝐺2 ∈ ⋂{𝜏𝜆: 𝜆 ∈ Λ}. Then 𝐺1, 𝐺2 ∈ 𝜏𝜆 for every 𝜆 ∈ Λ. Since 𝜏𝜆 is a topology for 𝑋 

for every 𝜆 ∈ Λ, it follows that 𝐺1⋂ 𝐺2 ∈ 𝜏𝜆 for every 𝜆 ∈ Λ. Hence 𝐺1⋂ 𝐺2 ∈ ⋂{𝜏𝜆: 𝜆 ∈ Λ}. 

(iii) Let 𝐺𝛼 ∈ ⋂{𝜏𝜆: 𝜆 ∈ Λ} for all 𝛼 ∈ Δ where Δ is an arbitrary set. Then 𝐺𝛼 ∈ 𝜏𝜆, ∀𝜆 ∈ Λ 

and ∀𝛼 ∈ Δ. Since each 𝜏𝜆 is a topology for 𝑋, it follows that ⋃{𝐺𝛼: 𝛼 ∈ Δ} ∈ 𝜏𝜆, ∀𝜆 ∈ Λ. 

Hence ⋃{𝐺𝛼: 𝛼 ∈ Δ} ∈ ⋂{𝜏𝜆: 𝜆 ∈ Λ}. Thus ⋂{𝜏𝜆: 𝜆 ∈ Λ} is a topology for 𝑋. 

 

Remark: The union of topologies is not necessarily a topology on 𝑋. 

 

Example: Let 𝑋 = {𝑎, 𝑏, 𝑐}. Consider two topologies 𝜏1 and 𝜏2 for 𝑋 defined as follows: 

𝜏1 = {𝜙, {𝑎}, 𝑋} and 𝜏2 = {𝜙, {𝑏}, 𝑋}. Then 𝜏1⋃𝜏2 = {𝜙, {𝑎}, {𝑏}, 𝑋} which is not a topology 

for 𝑋. 

 

Definition: Let 𝜏1 and 𝜏2 be two topologies for a non-empty set 𝑋, we say that 𝜏1 is coarser 

(or weaker or smaller) than 𝜏2 or that 𝜏2 is finer (or stronger or larger) than 𝜏1 iff 𝜏1 ⊆ 𝜏2 that 

is iff every 𝜏1-open set is 𝜏2-open set. 
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If either 𝜏1 ⊆ 𝜏2 or 𝜏2 ⊆ 𝜏1, then we say that 𝜏1 and 𝜏2 are comparable. 

If 𝜏1 ⊈ 𝜏2 and 𝜏2 ⊈ 𝜏1, then we say that 𝜏1 and 𝜏2 are not comparable 

 

Example: For a non-empty set 𝑋, the indiscrete topology 𝐼 is the coarser topology and the 

discrete topology 𝐷 is the finer topology. 

 

Example: Let 𝑋 = {𝑎, 𝑏, 𝑐}. Consider three topologies 𝜏1, 𝜏2 and 𝜏3 for 𝑋 defined as follows: 

𝜏1 = {𝜙, {𝑎}, 𝑋},  𝜏2 = {𝜙, {𝑏}, 𝑋} and 𝜏3 = {𝜙, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}, 𝑋}. 

Since 𝜏1 ⊈ 𝜏2 and 𝜏2 ⊈ 𝜏1, then 𝜏1 and 𝜏2 are not comparable. 

Since 𝜏2 ⊈ 𝜏3 and 𝜏3 ⊈ 𝜏2, then 𝜏2 and 𝜏3 are not comparable. 

Since 𝜏1 ⊆ 𝜏3, then 𝜏1 and 𝜏3 are comparable. 

Since 𝜏1 ⊆ 𝜏3, then 𝜏1 is coarser than 𝜏3 or 𝜏3 is finer than 𝜏1. 

 

Metric topologies 

Theorem: Let (𝑋, 𝑑) be any metric space and let 𝜏𝑑 consist of 𝜙 and those subsets 𝐺 of 𝑋 

having the property that to each 𝑥 ∈ 𝐺 there exists 𝑟 > 0 such that the open ball 𝐵(𝑥, 𝑟) is 

contained in 𝐺. Then 𝜏𝑑 is a topology for 𝑋. 

Proof: (i) 𝜙 ∈ 𝜏𝑑 by definition. Also to each 𝑥 ∈ 𝑋, 𝐵(𝑥, 1) ⊆ 𝑋, showing that 𝑋 ∈ 𝜏𝑑. 

(ii) Let 𝐺1, 𝐺2 ∈ 𝜏𝑑 and let 𝑥 ∈ 𝐺1⋂𝐺2. Then 𝑥 ∈ 𝐺1 and 𝑥 ∈ 𝐺2. Hence there exist 𝑟1 > 0 

and 𝑟2 > 0 such that 𝐵(𝑥, 𝑟1) ⊆ 𝐺1 and 𝐵(𝑥, 𝑟2) ⊆ 𝐺2.  

Let 𝑟 = 𝑚𝑖𝑛{𝑟1, 𝑟2}. Then 𝐵(𝑥, 𝑟) ⊆ 𝐺1⋂𝐺2 and therefore 𝐺1⋂𝐺2 ∈ 𝜏𝑑. 

(iii) Let Ω be an arbitrary collection of members of 𝜏𝑑 and let 𝑥 ∈ ⋃Ω. Then 𝑥 ∈ 𝐺 for some 

𝐺 ∈ Ω. Since 𝐺 ∈ 𝜏𝑑, there exists 𝑟 > 0 such that 𝐵(𝑥, 𝑟) ⊆ 𝐺. But 𝐵(𝑥, 𝑟) ⊆ ⋃Ω and 

therefore ⋃Ω ∈ 𝜏𝑑. Hence 𝜏𝑑 is a topology for 𝑋. 

 

Remark: Every open ball in a metric space (𝑋, 𝑑) is an open set with respect to the 𝑑-metric 

topology for 𝑋. 

 

Definition: A topological space (𝑋, 𝜏) is said to be metrizable iff there exists a metric 𝑑 for 𝑋 

such that 𝜏𝑑 = 𝜏.   i.e  𝑑-metric topology for 𝑋 is the same as 𝜏. 

 

Example: Let 𝑋 = {𝑎, 𝑏} , 𝑎 ≠ 𝑏. Define 𝜏 = {𝜙, {𝑎}, 𝑋}. Then 𝜏 is a topology for 𝑋.  

The topological space (𝑋, 𝜏) is not metrizable. 

Solution: Let 𝑑 be any metric space for 𝑋 and let 𝑑(𝑎, 𝑏) = 𝑟. Since 𝑎 ≠ 𝑏, 𝑟 > 0.  

Then 𝐵(𝑎, 𝑟) = {𝑎} ∈ 𝜏 and 𝐵(𝑏, 𝑟) = {𝑏} ∉ 𝜏. Hence (𝑋, 𝜏) is not metrizable. 
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Example: Show that the usual metric for ℝ induces usual topology for ℝ. 

 

Example: Show that the discrete metric on a set 𝑋 induces the discrete topology for 𝑋. 

 

Closed sets  

Definition: Let (𝑋, 𝜏) be a topological space. A subset 𝐹 of 𝑋 is said to be 𝜏-closed if and 

only if its complement 𝐹𝑐 is open. 

 

Remark: Since 𝜙 is open, it follows that 𝜙𝑐 = 𝑋 is closed. Similarly since 𝑋 is open, 𝑋𝑐 = 𝜙 

is closed. Thus 𝜙 and 𝑋 are open as well as closed in every topological space. 

 

Example: Let 𝑋 = {𝑎, 𝑏, 𝑐} and let 𝜏 = {𝜙, {𝑎}, {𝑏, 𝑐}, 𝑋} be a topology for 𝑋. 

Solution: Since {𝑎}𝑐 = {𝑏, 𝑐},  {𝑏, 𝑐}𝑐 = {𝑎}, it follows that the closed sets are: 

 𝑋, {𝑏, 𝑐}, {𝑎}, 𝜙. 

 

Example: If 𝑎 ∈ ℝ, then {𝑎} is a closed set in the usual topology for ℝ. 

Solution: {𝑎}𝑐 = (−∞, 𝑎)⋃(𝑎, ∞). 

But (−∞, 𝑎) and (𝑎, ∞) are U-open sets. Hence their union is also U-open. 

It follows that {𝑎}𝑐 is U-open. Therefore {𝑎} is U-closed. 

 

Example: Let 𝑎, 𝑏 ∈ ℝ where 𝑎 < 𝑏. Then the closed interval [𝑎, 𝑏] is closed set the usual 

topology for ℝ. 

 

Solution: [𝑎, 𝑏]𝑐 = {𝑥 ∈ ℝ ∶ 𝑥 < 𝑎 𝑜𝑟 𝑥 > 𝑏} 

                            = (−∞, 𝑎)⋃(𝑏, ∞) 

which is U-open, being the union of two U-open sets. Hence [𝑎, 𝑏] is U-closed. 

 

Definition: A topological space (𝑋, 𝜏) is said to be a door space iff every subset of 𝑋 is either 

open or closed. 

 

Example: Let 𝑋 = {𝑎, 𝑏, 𝑐} and let 𝜏 = {𝜙, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐}, 𝑋}. 

Then closed sets are 𝑋, {𝑎, 𝑐}, {𝑐}, {𝑎}, 𝜙. Hence all the subsets of 𝑋 are either open or closed 

and consequently (𝑋, 𝜏) is a door space. 

 

Theorem: If {𝐹𝜆: 𝜆 ∈ Λ} is any collection of closed subsets of a topological space 𝑋, then 

⋂{𝐹𝜆: 𝜆 ∈ Λ} is a closed set. 

Proof: 𝐹𝜆 is closed, ∀𝜆 ∈ Λ ⟹ 𝐹𝜆
𝑐 is open, ∀𝜆 ∈ Λ 
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                                        ⟹ ⋃{𝐹𝜆
𝑐: 𝜆 ∈ Λ} is open [ By part (iii) of the definition of topology] 

                                        ⟹ [⋂{𝐹𝜆: 𝜆 ∈ Λ}]𝑐 is open [ By De-Morgan law] 

                                        ⟹ ⋂{𝐹𝜆: 𝜆 ∈ Λ} is a closed [ By definition of closed sets]. 

 

Theorem: If 𝐹1 and 𝐹2 are two closed subsets of a topological space (𝑋, 𝜏). Then 𝐹1⋃𝐹2 is a 

closed set. 

Proof: 𝐹1, 𝐹2 are closed ⟹ 𝐹1
𝑐, 𝐹2

𝑐 are open 

                                       ⟹ 𝐹1
𝑐⋂𝐹2

𝑐 is open [ By part (ii) of the definition of topology] 

                                       ⟹ [𝐹1⋃𝐹2]𝑐 is open [ By De-Morgan law] 

                                       ⟹ 𝐹1⋃𝐹2 is closed. 

 

Remark: Note that if 𝐹1, 𝐹2, … … , 𝐹𝑛 be a finite number of closed subsets of 𝑋, then their 

union will also be a closed subset of 𝑋. 

 

Remark: The union of an infinite collection of closed sets in a topological space is not 

necessarily closed. 

 

Example: Let (ℝ, U) be the usual topological space and let 𝐹𝑛 = [
1

𝑛
, 1], 𝑛 ∈ ℕ so that 𝐹𝑛 is a 

closed interval on ℝ. 

Solution: 𝐹𝑛 is a U-closed set. Now  

                 ⋃{𝐹𝑛 ∶ 𝑛 ∈ ℕ} = {1}⋃[1

2
, 1]⋃[1

3
, 1]⋃[1

4
, 1] . … … = (0,1] 

Since (0,1] is not closed, it follows that the union of an infinite collection of closed sets is not 

necessarily closed. 

 

Example: Every finite subset of ℝ is a U-closed set. 

 

Theorem: Let 𝑋 be a non-empty set and 𝐹 be a family of subsets of 𝑋 such that  

(i) 𝜙 ∈ F and 𝑋 ∈ F 

(ii) 𝐹1, 𝐹2 ∈ F  ⟹ 𝐹1⋃𝐹2 ∈ F. 

(iii) 𝐹𝜆 ∈ F, ∀𝜆 ∈ Λ ⟹ ⋂{𝐹𝜆: 𝜆 ∈ Λ} ∈ F. 

Then there exists a unique topology for 𝑋 such that the 𝜏-closed subsets of 𝑋 are precisely the 

members of F. 

Proof: H.W. 
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Neighbourhoods 

Definition: Let (𝑋, 𝜏) be a topological space and let 𝑥 ∈ 𝑋. A subset 𝑁 of 𝑋 is said to be a    

𝜏-neighbourhood (briefly τ-nhd) of 𝑥 iff there exists a 𝜏-open set 𝐺 such that 𝑥 ∈ 𝐺 ⊆ 𝑁. 

Similarly 𝑁 is called a τ-nhd of 𝐴 ⊆ 𝑋 iff there exists an open set 𝐺 such that 𝐴 ⊆ 𝐺 ⊆ 𝑁. 

The collection of all 𝜏-neighbourhoods of 𝑥 ∈ 𝑋 is called the neighbourhood system at 𝑥 and 

shall be denoted by 𝑁(𝑥). 

 

Remark: (i) 𝜏-open set is a 𝜏-neighbourhood of each of its points. 

(ii) 𝜏-neighbourhood of a point need not be a 𝜏-open set. 

(iii) every open set containing 𝑥 is a nhd of 𝑥.  

 

Example: Let 𝑋 = {1,2,3} and let 𝜏 = {𝜙, {1}, {2,3}, 𝑋} be a topology for 𝑋. Find the nhd 

system of 1,2,3. 

Solution: Then all subsets of 𝑋 are: 𝜙, {1}, {2}, {3}, {1,2}, {1,3}, {2,3} and 𝑋. 

𝑁(1) = {{1}, {1,2}, {1,3}, 𝑋}, 

𝑁(2) = {{2,3}, 𝑋}, 

𝑁(3) = {{2,3}, 𝑋}. 

 

Example: Let 𝑋 = {1,2,3,4,5} and let 𝜏 = {𝜙, {1}, {1,2}, {1,2,5}, {1,3,4}, {1,2,3,4}, 𝑋} be a 

topology for 𝑋. Find the nhd system of 1,2,3,4,5. 

Solution: H.W. 

 

Theorem: A subset of a topological space is open if and only if it is a neighbourhood of each 

of its points. 

Proof: Let 𝐺 be an open subset of a topological space. Then for every 𝑥 ∈ 𝐺 such that 𝑥 ∈

𝐺 ⊆ 𝐺 and therefore 𝐺 is a nhd of each of its points. 

Conversely, let 𝐺 be a nhd of each of its points. If 𝐺 = 𝜙, then it is open. 

If 𝐺 ≠ 𝜙, then to each 𝑥 ∈ 𝐺 there exists an open set 𝐺𝑥 such that 𝑥 ∈ 𝐺𝑥 ⊆ 𝐺. It follows that 

𝐺 = ⋃{𝐺𝑥 ∶ 𝑥 ∈ 𝐺}. Hence 𝐺 is open, being a union of open sets. 

 

Properties of neighbourhoods 

Theorem: Let 𝑋 be a topological space, and for each 𝑥 ∈ 𝑋, let 𝑁(𝑥) be the collection of all 

nhds of 𝑥. Then: 

(1) ∀𝑥 ∈ 𝑋, 𝑁(𝑥) ≠ 𝜙   

i.e  every point 𝑥 has at least one neighbourhood. 
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(2) 𝑁 ∈ 𝑁(𝑥)  ⟹ 𝑥 ∈ 𝑁  

i.e  every neighbourhood of 𝑥 contains 𝑥. 

(3) 𝑁 ∈ 𝑁(𝑥), 𝑁 ⊆ 𝑀 ⟹ 𝑀 ∈ 𝑁(𝑥)  

i.e  every set containing a neighbourhood of 𝑥 is a neighbourhood of 𝑥. 

(4) 𝑁 ∈ 𝑁(𝑥), 𝑀 ∈ 𝑁(𝑥) ⟹ 𝑁⋂𝑀 ∈ 𝑁(𝑥)   

i.e  the intersection of two neighbourhoods of 𝑥 is a neighbourhood of 𝑥. 

(5) 𝑁 ∈ 𝑁(𝑥)  ⟹ ∃𝑀 ∈ 𝑁(𝑥) such that 𝑀 ⊆ 𝑁 and 𝑀 ∈ 𝑁(𝑦) ∀𝑦 ∈ 𝑀   

i.e  if 𝑁 is a neighbourhood of 𝑥, then there exists a neighbourhood 𝑀 of 𝑥 which is a subset 

of 𝑁 such that 𝑀 is a neighbourhood of each of its points. 

Proof: (1) Since 𝑋 is an open set, it is a nhd of every 𝑥 ∈ 𝑋. Hence there exists at least one 

nhd (namely 𝑋) for each 𝑥 ∈ 𝑋. Hence 𝑁(𝑥) ≠ 𝜙, ∀𝑥 ∈ 𝑋. 

(2) If 𝑁 ∈ 𝑁(𝑥), then 𝑁 is a nhd of 𝑥. So by definition of nhd, 𝑥 ∈ 𝑁. 

(3) If 𝑁 ∈ 𝑁(𝑥), then there is an open set 𝐺 such that 𝑥 ∈ 𝐺 ⊆ 𝑁. Since 𝑁 ⊆ 𝑀, 𝑥 ∈ 𝐺 ⊆ 𝑀 

and so 𝑀 is a nhd of 𝑥. Hence 𝑀 ∈ 𝑁(𝑥). 

(4) Let 𝑁 ∈ 𝑁(𝑥) and 𝑀 ∈ 𝑁(𝑥). Then by definition of nhd, there exist open sets 𝐺1 and 𝐺2 

such that 𝑥 ∈ 𝐺1 ⊆ 𝑁 and 𝑥 ∈ 𝐺2 ⊆ 𝑀. Hence 𝑥 ∈ 𝐺1⋂𝐺2 ⊆ 𝑁⋂𝑀………… (1) 

Since 𝐺1⋂𝐺2 is open set, it follows from (1) that 𝑁⋂𝑀 is a nhd of 𝑥. Hence 𝑁⋂𝑀 ∈ 𝑁(𝑥). 

(5) If 𝑁 ∈ 𝑁(𝑥), then there exists an open set 𝑀 such that 𝑥 ∈ 𝑀 ⊆ 𝑁. Since 𝑀 is open set, it 

is a nhd of each of its points. Therefore 𝑀 ∈ 𝑁(𝑦) ∀𝑦 ∈ 𝑀. 

 

Theorem: Let 𝑋 be a non-empty set and for each 𝑥 ∈ 𝑋, let 𝑁(𝑥) be a non-empty collection 

of subsets of 𝑋 satisfying the following conditions: 

(1) 𝑁 ∈ 𝑁(𝑥)  ⟹ 𝑥 ∈ 𝑁 

(2) 𝑁 ∈ 𝑁(𝑥), 𝑀 ∈ 𝑁(𝑥) ⟹ 𝑁⋂𝑀 ∈ 𝑁(𝑥). 

Let 𝜏 consist of the empty set and all those non-empty subsets 𝐺 of 𝑋 having the property that 

𝑥 ∈ 𝐺 implies that there exists an 𝑁 ∈ 𝑁(𝑥) such that 𝑥 ∈ 𝑁 ⊆ 𝐺. Then 𝜏 is a topology for 𝑋. 

Proof: (i) 𝜙 ∈ 𝜏 by definition. We now show that 𝑋 ∈ 𝜏. 

Let 𝑥 ∈ 𝑋. Since 𝑁(𝑥) ≠ 𝜙, there is an 𝑁 ∈ 𝑁(𝑥) and so 𝑥 ∈ 𝑁 by (1). Since 𝑁 is a subset of 

𝑋, we have 𝑥 ∈ 𝑁 ⊆ 𝑋. Hence 𝑋 ∈ 𝜏. 

(ii) Let 𝐺1, 𝐺2 ∈ 𝜏. If 𝑥 ∈ 𝐺1⋂𝐺2, then 𝑥 ∈ 𝐺1 and 𝑥 ∈ 𝐺2. Since 𝐺1 ∈ 𝜏 and 𝐺2 ∈ 𝜏, there 

exist 𝑁 ∈ 𝑁(𝑥) and 𝑀 ∈ 𝑁(𝑥) such that 𝑥 ∈ 𝑁 ⊆ 𝐺1 and 𝑥 ∈ 𝑀 ⊆ 𝐺2. Then 𝑥 ∈ 𝑁⋂𝑀 ⊆

𝐺1⋂𝐺2. But 𝑁⋂𝑀 ∈ 𝑁(𝑥) by (2). Hence 𝐺1⋂𝐺2 ∈ 𝜏. 



Lect. Qays Hatem Imran                          General Topology                                               Fourth Stage 

 10 

(iii) Let 𝐺𝜆 ∈ 𝜏, ∀𝜆 ∈ Λ. If 𝑥 ∈ ⋃{𝐺𝜆 ∶ 𝜆 ∈ Λ}, then 𝑥 ∈ 𝐺𝜆𝑥
 for some 𝜆𝑥 ∈ Λ. Since 𝐺𝜆𝑥

∈ 𝜏, 

there exists an 𝑁 ∈ 𝑁(𝑥) such that 𝑥 ∈ 𝑁 ⊆ 𝐺𝜆𝑥
 and consequently 𝑥 ∈ 𝑁 ⊆ ⋃{𝐺𝜆 ∶ 𝜆 ∈ Λ}. 

Hence ⋃{𝐺𝜆 ∶ 𝜆 ∈ Λ} ∈ 𝜏. It follows that 𝜏 is a topology for 𝑋. 

 

Definition: Let (𝑋, 𝜏) be a topological space. A non-empty collection 𝛽(𝑥) of 𝜏-nhds of 𝑥 is 

called a base for the 𝜏-neighbourhood system of 𝑥 iff for every 𝜏-neighbourhood 𝑁 of 𝑥 there 

is 𝐵 ∈ 𝛽(𝑥) such that 𝐵 ⊆ 𝑁. We then also say that 𝛽(𝑥) is a local base at 𝑥 or a fundamental 

system of neighbourhoods of 𝑥. 

If 𝛽(𝑥) is a local base at 𝑥, then the members of 𝛽(𝑥) are called basic 𝜏-neighbourhoods of 𝑥. 

 

Example: Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and let 𝜏 = {𝜙, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐, 𝑑}, {𝑎, 𝑏, 𝑐, 𝑑}, {𝑎, 𝑏, 𝑒}, 𝑋} be 

a topology for 𝑋. 

Then a local base at each of the points 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 is given by: 

𝛽(𝑎) = {{𝑎}},     𝛽(𝑏) = {{𝑎, 𝑏}},    𝛽(𝑐) = {{𝑎, 𝑐, 𝑑}}, 

                               𝛽(𝑑) = {{𝑎, 𝑐, 𝑑}},     𝛽(𝑒) = {{𝑎, 𝑏, 𝑒}}. 

Observe that here a local base at each point consists of a single 𝜏-nhd of the point. 

Note that {{𝑎, 𝑏}} does not form a local base at 𝑎. (Why ?) 

 

Example: Consider the usual topology U for ℝ and any point 𝑥 ∈ ℝ. Then the collection 

𝛽(𝑥) = {(𝑥 − 𝜀, 𝑥 + 𝜀): 0 < 𝜀 ∈ ℝ} constitutes a base for the U-neighbourhood system of 𝑥. 

Solution: Let 𝑁 be any nhd of 𝑥. Then there exists a U-open set 𝐺 such that 𝑥 ∈ 𝐺 ⊆ 𝑁. 

Since 𝐺 is U-open, ∃𝜀 > 0 such that (𝑥 − 𝜀, 𝑥 + 𝜀) ⊆ 𝐺 ⊆ 𝑁. Thus to each nhd 𝑁 of 𝑥, ∃ a 

member (𝑥 − 𝜀, 𝑥 + 𝜀) of 𝛽(𝑥) such that (𝑥 − 𝜀, 𝑥 + 𝜀) ⊆ 𝑁. 

 

Definition: A topological space (𝑋, 𝜏) is said to satisfy the first axiom of countability if each 

point of 𝑋 possesses a countable local base. Such a topological space is said to be a first 

countable space.  

 

Example: A discrete topological space (𝑋, 𝐷) is first countable space. 

 

Example: The usual topological space (ℝ, U) is first countable space. 

Solution: Let 𝑥 ∈ ℝ. Then the collection {(𝑥 −
1

𝑛
, 𝑥 +

1

𝑛
) ∶ 𝑛 ∈ 𝑁} is a countable base at 𝑥 

and so (ℝ, U) is first countable. 
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Properties of local base  

Theorem: Let (𝑋, 𝜏) be a topological space and let 𝛽(𝑥) be a local base at any point 𝑥 of 𝑋. 

Then 𝛽(𝑥) has the following properties: 

(1) 𝛽(𝑥) ≠ 𝜙 for every 𝑥 ∈ 𝑋 

(2) If 𝐵 ∈ 𝛽(𝑥), then 𝑥 ∈ 𝐵 

(3) If 𝐴 ∈ 𝛽(𝑥) and 𝐵 ∈ 𝛽(𝑥), then there exists a 𝐶 ∈ 𝛽(𝑥) such that 𝐶 ⊆ 𝐴⋂𝐵 

(4) If 𝐴 ∈ 𝛽(𝑥), then there exists a set 𝐵 such that 𝑥 ∈ 𝐵 ⊆ 𝐴 and ∀𝑦 ∈ 𝐵, ∃𝐶 ∈ 𝛽(𝑦) 

satisfying 𝐶 ⊆ 𝐵. 

 

Definition: Let (𝑋, 𝜏) be a topological space. A collection 𝛽 of subsets of 𝑋 is said to form a 

base for 𝜏 if and only if  

(i) 𝛽 ⊆ 𝜏, 

(ii) for each point 𝑥 ∈ 𝑋 and each nhd 𝑁 of 𝑥 there exists some 𝐵 ∈ 𝛽 such that 𝑥 ∈ 𝐵 ⊆ 𝑁. 

 

Example: Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑} and let 𝜏 = {𝜙, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑋} be a 

topology for 𝑋. 

Then the collection 𝛽 = {{𝑎}, {𝑏}, {𝑐, 𝑑}} is a base for 𝜏 since  

(i) 𝛽 ⊆ 𝜏 and  

(ii) Each nhd of 𝑎 contains {𝑎} with a member of 𝛽 containing 𝑎. Similarly each nhd of 𝑏 

contains {𝑏} ∈ 𝛽 and each nhd of 𝑐 or 𝑑 contains {𝑐, 𝑑} ∈ 𝛽. 

 

Definition: Let (𝑋, 𝜏) be a topological space. The space is said to be second countable iff 

there exists a countable base for 𝜏. 

 

Example: The usual topological space (ℝ, U) is second countable space. 

 

Theorem: Let (𝑋, 𝜏) be a topological space. A sub collection 𝛽 of 𝜏 is a base for 𝜏 iff every 𝜏-

open set can be expressed as the union of members of 𝛽. 

Proof: Let 𝛽 be a base for 𝜏 and let 𝐺 ∈ 𝜏. Since 𝐺 is 𝜏-open, it is a 𝜏-nhd of each of its 

points. Hence by definition of base, ∀𝑥 ∈ 𝐺, ∃𝐵 ∈ 𝛽 such that 𝑥 ∈ 𝐵 ⊆ 𝐺. It follows that 𝐺 =

⋃{𝐵: 𝐵 ∈ 𝛽 and 𝐵 ⊆ 𝐺}.  

Conversely, let 𝛽 ⊆ 𝜏 and let every open set 𝐺 be the union of members of 𝛽. We have to 

show that 𝛽 is a base for 𝜏. We have  

(i) 𝛽 ⊆ 𝜏 (given) 
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(ii) Let 𝑥 ∈ 𝑋 and let 𝑁 be any nhd of 𝑥. Then there exists an open set 𝐺 such that 𝑥 ∈ 𝐺 ⊆ 𝑁. 

But 𝐺 is the union of members of 𝛽. Hence there exists 𝐵 ∈ 𝛽 such that 𝑥 ∈ 𝐵 ⊆ 𝐺 ⊆ 𝑁. 

Thus 𝛽 is a base for 𝜏. 

 

Theorem: Let 𝜏 and 𝜏′ be topologies for 𝑋 which have a common base 𝛽. Then 𝜏 = 𝜏′. 

 

Proof: Let 𝐺 ∈ 𝜏 and 𝑥 ∈ 𝐺. Since 𝐺 is 𝜏-open, it is a 𝜏-nhd of 𝑥 and since 𝛽 is a base for 𝜏, 

there exists 𝐵 ∈ 𝛽 such that 𝑥 ∈ 𝐵 ⊆ 𝐺. Since 𝛽 is a base for 𝜏′ and 𝐵 ∈ 𝛽, it follows that 

𝐵 ∈ 𝜏′. Hence 𝐺 is 𝜏′-nhd of 𝑥. Since 𝑥 is arbitrary, 𝐺 ∈ 𝜏′.  

Thus 𝜏 ⊆ 𝜏′. By symmetry 𝜏′ ⊆ 𝜏. Hence 𝜏 = 𝜏′. 

 

Properties of a base for a topology  

Theorem: Let (𝑋, 𝜏) be a topological space and let 𝛽 be a base for 𝜏. Then 𝛽 has the 

following properties: 

(1) For every 𝑥 ∈ 𝑋, there exists a 𝐵 ∈ 𝛽 such that 𝑥 ∈ 𝐵, that is, 𝑋 = ⋃{𝐵: 𝐵 ∈ 𝛽}. 

(2) For every 𝐵1, 𝐵2 ∈ 𝛽 and every point 𝑥 ∈ 𝐵1⋂𝐵2 there exists a 𝐵 ∈ 𝛽 such that 𝑥 ∈

𝐵 ⊆ 𝐵1⋂𝐵2. 

 

Theorem: Let 𝑋 be a non-empty set and let 𝛽 be a collection of subsets of 𝑋 satisfying the 

following conditions: 

(1) For every 𝑥 ∈ 𝑋, there exists a 𝐵 ∈ 𝛽 such that 𝑥 ∈ 𝐵, that is, 𝑋 = ⋃{𝐵: 𝐵 ∈ 𝛽}. 

(2) For every 𝐵1, 𝐵2 ∈ 𝛽 and every point 𝑥 ∈ 𝐵1⋂𝐵2 there exists a 𝐵 ∈ 𝛽 such that 𝑥 ∈

𝐵 ⊆ 𝐵1⋂𝐵2. 

Then there exists a unique topology 𝜏 for 𝑋 such that 𝛽 is a base for 𝜏. 

 

Definition: Let (𝑋, 𝜏) be a topological space. A collection 𝛽∗ of subsets of 𝑋 is called a sub-

base for the topology 𝜏 iff 𝛽∗ ⊆ 𝜏 and finite intersections of members of 𝛽∗ form a base for 𝜏. 

 

Example: Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑} and let 𝜏 = {𝜙, {𝑎}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑋}. 

Then 𝛽∗ = {{𝑎, 𝑐}, {𝑎, 𝑑}, 𝑋} is a sub-base for 𝜏. Since the family 𝛽 of finite intersections of 

members of 𝛽∗ is given by 𝛽 = {{𝑎}, {𝑎, 𝑐}, {𝑎, 𝑑}, 𝑋} which is a base for 𝜏. 

 

Derived sets 

Definition: Let (𝑋, 𝜏) be a topological space and let 𝐴 be a subset of 𝑋. A point 𝑥 ∈ 𝑋 is 

called a limit point (or a cluster point) of 𝐴 iff every neighbourhood of 𝑥 contains a point of 𝐴 
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other than 𝑥. The set of all limit points of 𝐴 is called the derived set of 𝐴 and denoted by 

𝐷𝑋(𝐴) or 𝐷(𝐴).  i.e  (𝑁 − {𝑥})⋂𝐴 ≠ 𝜙, for every 𝜏-nhd 𝑁 of 𝑥. 

 

Example: Let 𝑋 = {1,2,3} and let 𝜏 = {𝜙, {1}, {2,3}, 𝑋}. Find all the limit points of the set 

𝐴 = {1,2}. 

Solution: 𝑁(1) = {{1}, {1,2}, {1,3}, 𝑋}. 

({1} − {1})⋂{1,2} = 𝜙⋂{1,2} = 𝜙. 

∴ 1 is not limit point of 𝐴. 

𝑁(2) = {{2,3}, 𝑋}. 

({2,3} − {2})⋂{1,2} = {3}⋂{1,2} = 𝜙. 

∴ 2 is not limit point of 𝐴. 

𝑁(3) = {{2,3}, 𝑋}. 

({2,3} − {3})⋂{1,2} = {2}⋂{1,2} = {2} ≠ 𝜙. 

∴ 3 is limit point of 𝐴. 

Hence 𝐷(𝐴) = {3}. 

 

Example: Let 𝑋 = {𝑎, 𝑏, 𝑐} and let 𝜏 = {𝜙, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}, 𝑋}. Find all the limit points of 

the sets (i) 𝐴 = {𝑏, 𝑐} (ii) 𝐵 = {𝑎, 𝑐}. 

Solution: 𝑁(𝑎) = {{𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}, 𝑋}, 𝑁(𝑏) = {{𝑎, 𝑏}, 𝑋} and 𝑁(𝑐) = {{𝑎, 𝑐}, 𝑋}. 

(i) 𝐴 = {𝑏, 𝑐} 

({𝑎} − {𝑎})⋂{𝑏, 𝑐} = 𝜙⋂{𝑏, 𝑐} = 𝜙. 

∴ 𝑎 is not limit point of 𝐴. 

({𝑎, 𝑏} − {𝑏})⋂{𝑏, 𝑐} = {𝑎}⋂{𝑏, 𝑐} = 𝜙. 

∴ 𝑏 is not limit point of 𝐴. 

({𝑎, 𝑐} − {𝑐})⋂{𝑏, 𝑐} = {𝑎}⋂{𝑏, 𝑐} = 𝜙. 

∴ 𝑐 is not limit point of 𝐴. 

Hence 𝐷(𝐴) = 𝜙. 

(ii) 𝐵 = {𝑎, 𝑐}. 

({𝑎} − {𝑎})⋂{𝑎, 𝑐} = 𝜙⋂{𝑎, 𝑐} = 𝜙. 

∴ 𝑎 is not limit point of 𝐵. 

({𝑎, 𝑏} − {𝑏})⋂{𝑎, 𝑐} = {𝑎}⋂{𝑎, 𝑐} = {𝑎} ≠ 𝜙. 

∴ 𝑏 is limit point of 𝐵. 

({𝑎, 𝑐} − {𝑐})⋂{𝑎, 𝑐} = {𝑎}⋂{𝑎, 𝑐} = {𝑎} ≠ 𝜙. 

∴ 𝑐 is limit point of 𝐵. 
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Hence 𝐷(𝐵) = {𝑏, 𝑐}. 

 

Definition: Let 𝐴 be a subset of a topological space (𝑋, 𝜏) and let 𝑥 ∈ 𝑋. Then 𝑥 is called an 

adherent point of 𝐴 iff every nhd of 𝑥 contains a point of 𝐴. The set of all adherent points of 𝐴 

is called the adherence of 𝐴 and denoted by 𝐴𝑑ℎ(𝐴). i.e  𝑁⋂𝐴 ≠ 𝜙, for every nhd 𝑁 of 𝑥. 

 

Example: Let 𝑋 = {1,2,3} and let 𝜏 = {𝜙, {1}, {2,3}, 𝑋}. Find all the adherent points of the set 

𝐴 = {1,2}. 

Solution: 𝑁(1) = {{1}, {1,2}, {1,3}, 𝑋}, 𝑁(2) = {{2,3}, 𝑋} and 𝑁(3) = {{2,3}, 𝑋}. 

{1}⋂{1,2} = {1} ≠ 𝜙, {1,2}⋂{1,2} = {1,2} ≠ 𝜙, {1,3}⋂{1,2} = {1} ≠ 𝜙 and 

 𝑋⋂{1,2} = {1,2} ≠ 𝜙. 

∴ 1 is adherent point of 𝐴. 

{2,3}⋂{1,2} = {2} ≠ 𝜙 and 𝑋⋂{1,2} = {1,2} ≠ 𝜙. 

∴ 2 is adherent point of 𝐴. 

{2,3}⋂{1,2} = {2} ≠ 𝜙 and 𝑋⋂{1,2} = {1,2} ≠ 𝜙. 

∴ 3 is adherent point of 𝐴. 

The adherent points of 𝐴 are 1,2,3. Hence 𝐴𝑑ℎ(𝐴) = {1,2,3}. 

 

Theorem: Let (𝑋, 𝜏) be a topological space and let 𝐴 be a subset of 𝑋. Then 𝐴 is closed if and 

only if 𝐷(𝐴) ⊆ 𝐴. 

Proof: Let 𝐴 be a closed. Then 𝐴𝑐 is open and to each 𝑥 ∈ 𝐴𝑐 there exists a nhd 𝑁𝑥 of 𝑥 such 

that 𝑁𝑥 ⊆ 𝐴𝑐. Since 𝐴⋂𝐴𝑐 = 𝜙, the nhd 𝑁𝑥 contains no point of 𝐴 and so 𝑥 is not a limit 

point of 𝐴. Thus no point of 𝐴𝑐 can be a limit point of 𝐴, that is, 𝐴 contains all its limit points. 

Hence 𝐷(𝐴) ⊆ 𝐴. 

Conversely, let 𝐷(𝐴) ⊆ 𝐴 and let 𝑥 ∈ 𝐴𝑐. Then 𝑥 ∉ 𝐴. Since 𝐷(𝐴) ⊆ 𝐴, 𝑥 ∉ 𝐷(𝐴). Hence 

there exists a nhd 𝑁𝑥 of 𝑥 such that 𝑁𝑥⋂𝐴 = 𝜙 so that 𝑁𝑥 ⊆ 𝐴𝑐. Thus 𝐴𝑐 contains a nhd of 

each of its points and so 𝐴𝑐 is open, that is, 𝐴 is closed. 

 

Properties of derived sets  

Theorem: Let 𝐴, 𝐵 be subsets of a topological space (𝑋, 𝜏). Then: 

(i) 𝐷(𝜙) = 𝜙. 

(ii) 𝐴 ⊆ 𝐵 ⟹ 𝐷(𝐴) ⊆ 𝐷(𝐵). 

(iii) 𝐷(𝐴⋂𝐵) ⊆ 𝐷(𝐴)⋂𝐷(𝐵). 

(iv) 𝐷(𝐴⋃𝐵) = 𝐷(𝐴)⋃𝐷(𝐵). 



Lect. Qays Hatem Imran                          General Topology                                               Fourth Stage 

 15 

Proof: (i) Since 𝜙 is closed, 𝐷(𝜙) ⊆ 𝜙. But 𝜙 is a subset of every set and so 𝜙 ⊆ 𝐷(𝜙). 

Hence 𝐷(𝜙) = 𝜙. 

(ii) Let 𝑝 ∈ 𝐷(𝐴) so that 𝑝 is a limit point of 𝐴. Then every nhd of 𝑝 contains a point of 𝐴 

different from 𝑝. Since 𝐴 ⊆ 𝐵, every nhd of 𝑝 must also contain a point of 𝐵 different from 𝑝. 

Hence 𝑝 is also a limit point of 𝐵, that is, 𝑝 ∈ 𝐷(𝐵). Hence 𝐷(𝐴) ⊆ 𝐷(𝐵). 

(iii) Since 𝐴⋂𝐵 ⊆ 𝐴 and 𝐴⋂𝐵 ⊆ 𝐵, by (ii) we have 𝐷(𝐴⋂𝐵) ⊆ 𝐷(𝐴) and 𝐷(𝐴⋂𝐵) ⊆ 𝐷(𝐵). 

Hence 𝐷(𝐴⋂𝐵) ⊆ 𝐷(𝐴)⋂𝐷(𝐵). 

(iv) Since 𝐴 ⊆ 𝐴⋃𝐵 and 𝐵 ⊆ 𝐴⋃𝐵, it follows from (ii) that 𝐷(𝐴) ⊆ 𝐷(𝐴⋃𝐵) and 𝐷(𝐵) ⊆

𝐷(𝐴⋃𝐵) and hence 𝐷(𝐴)⋃𝐷(𝐵) ⊆ 𝐷(𝐴⋃𝐵). 

Conversely, let 𝑥 ∉ 𝐷(𝐴)⋃𝐷(𝐵) ⟹ 𝑥 ∉ 𝐷(𝐴⋃𝐵). 

If 𝑥 ∉ 𝐷(𝐴)⋃𝐷(𝐵), then 𝑥 ∉ 𝐷(𝐴) and 𝑥 ∉ 𝐷(𝐵), that is, 𝑥 is neither a limit point of 𝐴 nor a 

limit point of 𝐵. Hence there exist nhds 𝑁1 and 𝑁2 of 𝑥 such that (𝑁1 − {𝑥})⋂𝐴 = 𝜙 and 

(𝑁2 − {𝑥})⋂𝐵 = 𝜙…………… (1) 

Now 𝑁 = 𝑁1⋂𝑁2 is a nhd of 𝑥 which by (1) contains no point of 𝐴⋃𝐵 except 𝑥. It follows 

that 𝑥 ∉ 𝐷(𝐴⋃𝐵) as required. Hence 𝐷(𝐴⋃𝐵) ⊆ 𝐷(𝐴)⋃𝐷(𝐵).  

Thus 𝐷(𝐴⋃𝐵) = 𝐷(𝐴)⋃𝐷(𝐵). 

 

Closure  

Definition: Let (𝑋, 𝜏) be a topological space and let 𝐴 be a subset of 𝑋. Then the intersection 

of all 𝜏-closed containing the set 𝐴 is called the closure of 𝐴 and denoted by 𝐴̅ or 𝑐(𝐴) or 

𝑐𝑙(𝐴).  i.e  𝑐𝑙(𝐴) = ⋂{𝐹: 𝐹 is closed, 𝐴 ⊆ 𝐹}. 

 

Example: Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑} and let 𝜏 = {𝜙, {𝑎}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑋}. Find the closure 

of the sets  (i) {𝑏, 𝑐} (ii) {𝑏} (iii) {𝑏, 𝑐, 𝑑}. 

Solution: The closed subsets of 𝑋 are 𝑋, {𝑏, 𝑐, 𝑑}, {𝑏, 𝑑}, {𝑏, 𝑐}, {𝑏} and 𝜙. 

𝑐𝑙(𝐴) = ⋂{𝐹: 𝐹 is closed, 𝐴 ⊆ 𝐹}. 

(i) 𝑐𝑙({𝑏, 𝑐}) = 𝑋⋂{𝑏, 𝑐, 𝑑}⋂{𝑏, 𝑐} = {𝑏, 𝑐}. 

(ii) 𝑐𝑙({𝑏}) = 𝑋⋂{𝑏, 𝑐, 𝑑}⋂{𝑏, 𝑑}⋂{𝑏, 𝑐}⋂{𝑏} = {𝑏}. 

(iii) 𝑐𝑙({𝑏, 𝑐, 𝑑}) = 𝑋⋂{𝑏, 𝑐, 𝑑} = {𝑏, 𝑐, 𝑑}. 

 

Theorem: Let 𝐴 be a subset of a topological space (𝑋, 𝜏). Then: 

(i) 𝑐𝑙(𝐴) is the smallest closed set containing 𝐴. 

(ii) 𝐴 is closed iff 𝑐𝑙(𝐴) = 𝐴. 

Proof: (i) This follows from definition. 
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(ii) If 𝐴 is closed, then 𝐴 itself is the smallest closed set containing 𝐴 and hence 𝑐𝑙(𝐴) = 𝐴. 

Conversely, let 𝑐𝑙(𝐴) = 𝐴. By (i), 𝑐𝑙(𝐴) is closed and so 𝐴 is also closed. 

 

Theorem: 𝑐𝑙(𝐴) = 𝐴⋃𝐷(𝐴). 

Proof: H.W. 

 

Corollary: 𝑐𝑙(𝐴) = 𝐴𝑑ℎ(𝐴) = {𝑥: each nhd of 𝑥 intersects 𝐴}. 

Proof: 𝑥 ∈ 𝐴𝑑ℎ(𝐴) ⟺ every nhd of 𝑥 intersects 𝐴 

                                 ⟺ 𝑥 ∈ 𝐴 or every nhd of 𝑥 contains a point of 𝐴 other than 𝑥. 

                                 ⟺ 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐷(𝐴) 

                                 ⟺ 𝑥 ∈ 𝐴⋃𝐷(𝐴) 

                                 ⟺ 𝑥 ∈ 𝑐𝑙(𝐴). 

 

Example: Consider the co-finite topological space (𝑋, 𝜏) and find the closure of any subset 𝐴 

of 𝑋. 

Solution: Here 𝜏 consists of the empty set 𝜙 and all those subsets of 𝑋 whose complements 

are finite so that the closed subsets of 𝑋 are all the finite subsets of 𝑋 together with 𝑋. Hence 

if 𝐴 ⊆ 𝑋 is finite, its closure 𝑐𝑙(𝐴) is 𝐴 itself since 𝐴 is closed and if 𝐴 is infinite then the 

only closed super set of 𝐴 is 𝑋 and so 𝑐𝑙(𝐴) = 𝑋. Thus 𝑐𝑙(𝐴) = 𝐴 if 𝐴 is finite and 𝑐𝑙(𝐴) = 𝑋 

if 𝐴 is infinite. 

 

Properties of closure  

Theorem: Let (𝑋, 𝜏) be a topological space and let 𝐴, 𝐵 be any subsets of 𝑋. Then: 

(i) 𝑐𝑙(𝜙) = 𝜙, 𝑐𝑙(𝑋) = 𝑋. 

(ii) 𝐴 ⊆ 𝑐𝑙(𝐴). 

(iii) 𝐴 ⊆ 𝐵 ⟹ 𝑐𝑙(𝐴) ⊆ 𝑐𝑙(𝐵). 

(iv) 𝑐𝑙(𝐴⋃𝐵) = 𝑐𝑙(𝐴)⋃𝑐𝑙(𝐵). 

(v) 𝑐𝑙(𝐴⋂𝐵) ⊆ 𝑐𝑙(𝐴)⋂𝑐𝑙(𝐵). 

(vi) 𝑐𝑙(𝑐𝑙(𝐴)) = 𝑐𝑙(𝐴). 

Proof: (i) Since 𝜙 is closed, we have 𝑐𝑙(𝜙) = 𝜙. 

Since 𝑋 is closed, we have 𝑐𝑙(𝑋) = 𝑋. 

(ii) By theorem (i), 𝑐𝑙(𝐴) is the smallest closed set containing 𝐴 and so 𝐴 ⊆ 𝑐𝑙(𝐴). 

(iii) By part (ii), 𝐵 ⊆ 𝑐𝑙(𝐵). Since 𝐴 ⊆ 𝐵, we have 𝐴 ⊆ 𝑐𝑙(𝐵). But 𝑐𝑙(𝐵) is a closed set.  

Thus 𝑐𝑙(𝐵) is a closed set containing 𝐴. Since 𝑐𝑙(𝐴) is the smallest closed set containing 𝐴, 

we have 𝑐𝑙(𝐴) ⊆ 𝑐𝑙(𝐵). Hence 𝐴 ⊆ 𝐵 ⟹ 𝑐𝑙(𝐴) ⊆ 𝑐𝑙(𝐵). 
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(iv) Since 𝐴 ⊆ 𝐴⋃𝐵 and 𝐵 ⊆ 𝐴⋃𝐵, we have 𝑐𝑙(𝐴) ⊆ 𝑐𝑙(𝐴⋃𝐵) and 𝑐𝑙(𝐵) ⊆ 𝑐𝑙(𝐴⋃𝐵) by 

part (iii). Hence 𝑐𝑙(𝐴)⋃𝑐𝑙(𝐵) ⊆ 𝑐𝑙(𝐴⋃𝐵)………… (1)  

Since 𝑐𝑙(𝐴) and 𝑐𝑙(𝐵) are closed sets, 𝑐𝑙(𝐴)⋃𝑐𝑙(𝐵) is also closed. Also 𝐴 ⊆ 𝑐𝑙(𝐴) and 𝐵 ⊆

𝑐𝑙(𝐵) implies that 𝐴⋃𝐵 ⊆ 𝑐𝑙(𝐴)⋃𝑐𝑙(𝐵). Thus 𝑐𝑙(𝐴)⋃𝑐𝑙(𝐵) is a closed set containing 𝐴⋃𝐵. 

Since 𝑐𝑙(𝐴⋃𝐵) is the smallest closed set containing 𝐴⋃𝐵, we have 

 𝑐𝑙(𝐴⋃𝐵) ⊆ 𝑐𝑙(𝐴)⋃𝑐𝑙(𝐵)………… (2)  

From (1) and (2), we have 𝑐𝑙(𝐴⋃𝐵) = 𝑐𝑙(𝐴)⋃𝑐𝑙(𝐵). 

(v) Since 𝐴⋂𝐵 ⊆ 𝐴 and 𝐴⋂𝐵 ⊆ 𝐵, by part (iii) we have 𝑐𝑙(𝐴⋂𝐵) ⊆ 𝑐𝑙(𝐴) and 

𝑐𝑙(𝐴⋂𝐵) ⊆ 𝑐𝑙(𝐵). Hence 𝑐𝑙(𝐴⋂𝐵) ⊆ 𝑐𝑙(𝐴)⋂𝑐𝑙(𝐵). 

(vi) Since 𝑐𝑙(𝐴) is a closed set, we have 𝑐𝑙(𝑐𝑙(𝐴)) = 𝑐𝑙(𝐴) by theorem (ii) [𝐴 is closed iff 

𝑐𝑙(𝐴) = 𝐴]. 

 

Theorem: Let (𝑋, 𝜏) be a topological space and let 𝐴 be subset of 𝑋. Then the following 

statements are equivalent: 

(i) 𝐴 is closed. 

(ii) 𝑐𝑙(𝐴) = 𝐴. 

(iii) 𝐴 contains all its limit points. 

Proof: (i) ⟹ (ii) : 𝐴 is closed ⟹ 𝑐𝑙(𝐴) = 𝐴. By theorem part (ii) [𝐴 is closed iff 𝑐𝑙(𝐴) = 𝐴] 

(ii) ⟹ (iii) : 𝑐𝑙(𝐴) = 𝐴 ⟹  𝐴⋃𝐷(𝐴) = 𝐴. By theorem [𝑐𝑙(𝐴) = 𝐴⋃𝐷(𝐴)] 

                                        ⟹  𝐷(𝐴) ⊆ 𝐴 ⟹  𝐴 contains all its limit points. 

(iii) ⟹ (i) : 𝐴 contains all its limit points  ⟹  𝐷(𝐴) ⊆ 𝐴 

                                                                     ⟹  𝐴⋃𝐷(𝐴) = 𝐴 

                                                                     ⟹  𝑐𝑙(𝐴) = 𝐴 

                                                                     ⟹  𝐴 is closed. By theorem part (ii)  

 

Interior of a set  

Definition: Let (𝑋, 𝜏) be a topological space and let 𝐴 be a subset of 𝑋. A point 𝑥 ∈ 𝑋 is said 

to be an interior point of 𝐴 iff 𝐴 is a neighbourhood of 𝑥, that is, iff there exists an open set 𝐺 

such that 𝑥 ∈ 𝐺 ⊆ 𝐴. The set all interior points of 𝐴 is called the interior of 𝐴 and is denoted 

by 𝐴∘ or 𝐴𝑖 or 𝑖(𝐴) or 𝑖𝑛𝑡(𝐴). 

 

Example: Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑} and let 𝜏 = {𝜙, {𝑎}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑋}. Find the interior 

points of the sets (i)  𝐴 = {𝑏, 𝑐}  (ii)  𝐵 = {𝑎, 𝑑} 

Solution: (i) 𝑎 ∈ {𝑎} ⊈ {𝑏, 𝑐}, 𝑎 ∈ {𝑎, 𝑐} ⊈ {𝑏, 𝑐}, 𝑎 ∈ {𝑎, 𝑑} ⊈ {𝑏, 𝑐}, 𝑎 ∈ {𝑎, 𝑐, 𝑑} ⊈ {𝑏, 𝑐} 

and 𝑎 ∈ 𝑋 ⊈ {𝑏, 𝑐}. 
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∴ 𝑎 is not interior point of 𝐴. 

𝑏 ∈ 𝑋 ⊈ {𝑏, 𝑐} 

∴ 𝑏 is not interior point of 𝐴. 

𝑐 ∈ {𝑎, 𝑐} ⊈ {𝑏, 𝑐}, 𝑐 ∈ {𝑎, 𝑐, 𝑑} ⊈ {𝑏, 𝑐} and 𝑐 ∈ 𝑋 ⊈ {𝑏, 𝑐}. 

∴ 𝑐 is not interior point of 𝐴. 

𝑑 ∈ {𝑎, 𝑑} ⊈ {𝑏, 𝑐}, 𝑑 ∈ {𝑎, 𝑐, 𝑑} ⊈ {𝑏, 𝑐} and 𝑑 ∈ 𝑋 ⊈ {𝑏, 𝑐}. 

∴ 𝑑 is not interior point of 𝐴. 

𝑖𝑛𝑡(𝐴) = 𝜙. 

(ii) 𝑎 ∈ {𝑎} ⊆ {𝑎, 𝑑} 

∴ 𝑎 is interior point of 𝐵. 

𝑏 ∈ 𝑋 ⊈ {𝑎, 𝑑} 

∴ 𝑏 is not interior point of 𝐵. 

𝑐 ∈ {𝑎, 𝑐} ⊈ {𝑎, 𝑑}, 𝑐 ∈ {𝑎, 𝑐, 𝑑} ⊈ {𝑎, 𝑑} and 𝑐 ∈ 𝑋 ⊈ {𝑎, 𝑑}. 

∴ 𝑐 is not interior point of 𝐵. 

𝑑 ∈ {𝑎, 𝑑} ⊆ {𝑎, 𝑑} 

∴ 𝑑 is interior point of 𝐵. 

𝑖𝑛𝑡(𝐵) = {𝑎, 𝑑}. 

 

Theorem: 𝑖𝑛𝑡(𝐴) = ⋃{𝐺: 𝐺 is open , 𝐺 ⊆ 𝐴}. 

Proof: 𝑥 ∈ 𝑖𝑛𝑡(𝐴)  ⟺ 𝐴 is a nhd of 𝑥  

                                ⟺ there exists an open set 𝐺 such that 𝑥 ∈ 𝐺 ⊆ 𝐴 

                                ⟺ 𝑥 ∈ ⋃{𝐺: 𝐺 is open , 𝐺 ⊆ 𝐴}. 

Hence, 𝑖𝑛𝑡(𝐴) = ⋃{𝐺: 𝐺 is open , 𝐺 ⊆ 𝐴}. 

 

Theorem: Let (𝑋, 𝜏) be a topological space and let 𝐴 be a subset of 𝑋. Then: 

(i) 𝑖𝑛𝑡(𝐴) is an open set. 

(ii) 𝑖𝑛𝑡(𝐴) is the largest open set contained in 𝐴. 

(iii) 𝐴 is an open set iff 𝑖𝑛𝑡(𝐴) = 𝐴. 

Proof: (i) Let 𝑥 ∈ 𝑖𝑛𝑡(𝐴). Then 𝑥 is an interior point of 𝐴. Hence by definition, 𝐴 is a nhd of 

𝑥. Then there exists an open set 𝐺 such that 𝑥 ∈ 𝐺 ⊆ 𝐴. Since 𝐺 is open, it is a nhd of each of 

its points and so 𝐴 is also a nhd of each point of 𝐺. It follows that every point of 𝐺 is an 

interior point of 𝐴 so that 𝐺 ⊆ 𝑖𝑛𝑡(𝐴). Thus it is shown that to each 𝑥 ∈ 𝑖𝑛𝑡(𝐴), there exists 

an open set 𝐺 such that 𝑥 ∈ 𝐺 ⊆ 𝑖𝑛𝑡(𝐴). Hence 𝑖𝑛𝑡(𝐴) is a nhd of each of its points and 

consequently 𝑖𝑛𝑡(𝐴) is open set. 
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(ii) Let 𝐺 be any open subset of 𝐴 and let 𝑥 ∈ 𝐺 so that 𝑥 ∈ 𝐺 ⊆ 𝐴. Since 𝐺 is open, 𝐴 is a 

nhd of 𝑥 and consequently 𝑥 is an interior point of 𝐴. Hence 𝑥 ∈ 𝑖𝑛𝑡(𝐴). Thus we have shown 

that 𝑥 ∈ 𝐺 ⟹ 𝑥 ∈ 𝑖𝑛𝑡(𝐴) and so 𝐺 ⊆ 𝑖𝑛𝑡(𝐴) ⊆ 𝐴. Hence 𝑖𝑛𝑡(𝐴) contains every open subset 

of 𝐴 and it is therefore the largest open subset of 𝐴.  

(iii) Let 𝑖𝑛𝑡(𝐴) = 𝐴. By part (i) 𝑖𝑛𝑡(𝐴) is an open set and therefore 𝐴 is also open. 

Conversely, let 𝐴 be open set. Then 𝐴 is surely identical with the largest open subset of 𝐴.  

But by part (ii), 𝑖𝑛𝑡(𝐴) is the largest open subset of 𝐴. Hence 𝑖𝑛𝑡(𝐴) = 𝐴. 

 

Properties of interior  

Theorem: Let (𝑋, 𝜏) be a topological space and let 𝐴, 𝐵 be any subsets of 𝑋. Then: 

(i) 𝑖𝑛𝑡(𝜙) = 𝜙, 𝑖𝑛𝑡(𝑋) = 𝑋. 

(ii) 𝑖𝑛𝑡(𝐴) ⊆ 𝐴. 

(iii) 𝐴 ⊆ 𝐵 ⟹ 𝑖𝑛𝑡(𝐴) ⊆ 𝑖𝑛𝑡(𝐵). 

(iv) 𝑖𝑛𝑡(𝐴⋂𝐵) = 𝑖𝑛𝑡(𝐴)⋂𝑖𝑛𝑡(𝐵). 

(v) 𝑖𝑛𝑡(𝐴)⋃𝑖𝑛𝑡(𝐵) ⊆ 𝑖𝑛𝑡(𝐴⋃𝐵). 

(vi) 𝑖𝑛𝑡(𝑖𝑛𝑡(𝐴)) = 𝑖𝑛𝑡(𝐴). 

Proof: (i) Since 𝜙 and 𝑋 are open sets, we have by part (iii) of theorem [𝐴 is an open set iff 

𝑖𝑛𝑡(𝐴) = 𝐴], 𝑖𝑛𝑡(𝜙) = 𝜙, 𝑖𝑛𝑡(𝑋) = 𝑋. 

(ii) 𝑥 ∈ 𝑖𝑛𝑡(𝐴) ⟹ 𝑥 is an interior point of 𝐴 

                         ⟹ 𝐴 is a nhd of 𝑥 ⟹  𝑥 ∈ 𝐴. 

Hence 𝑖𝑛𝑡(𝐴) ⊆ 𝐴. 

(iii) Let 𝑥 ∈ 𝑖𝑛𝑡(𝐴). Then 𝑥 is an interior point of 𝐴 and so  𝐴 is a nhd of 𝑥. Since 𝐴 ⊆ 𝐵, 𝐵 is 

also a nhd of 𝑥. This implies that 𝑥 ∈ 𝑖𝑛𝑡(𝐵). Hence 𝑖𝑛𝑡(𝐴) ⊆ 𝑖𝑛𝑡(𝐵). 

(iv) Since 𝐴⋂𝐵 ⊆ 𝐴 and 𝐴⋂𝐵 ⊆ 𝐵, by part (iii) we have 𝑖𝑛𝑡(𝐴⋂𝐵) ⊆ 𝑖𝑛𝑡(𝐴) and 

𝑖𝑛𝑡(𝐴⋂𝐵) ⊆ 𝑖𝑛𝑡(𝐵). Hence 𝑖𝑛𝑡(𝐴⋂𝐵) ⊆ 𝑖𝑛𝑡(𝐴)⋂𝑖𝑛𝑡(𝐵)…………. (1)   

Let 𝑥 ∈ 𝑖𝑛𝑡(𝐴)⋂𝑖𝑛𝑡(𝐵). Then 𝑥 ∈ 𝑖𝑛𝑡(𝐴) and 𝑥 ∈ 𝑖𝑛𝑡(𝐵). Hence 𝑥 is an interior point of 

each of the sets 𝐴 and 𝐵. It follows that 𝐴 and 𝐵 are nhds of 𝑥 so that 𝐴⋂𝐵 is also a nhd of 𝑥. 

Hence 𝑥 ∈ 𝑖𝑛𝑡(𝐴⋂𝐵). Hence 𝑖𝑛𝑡(𝐴)⋂𝑖𝑛𝑡(𝐵) ⊆ 𝑖𝑛𝑡(𝐴⋂𝐵)………… (2) 

From (1) and (2), we get  𝑖𝑛𝑡(𝐴⋂𝐵) = 𝑖𝑛𝑡(𝐴)⋂𝑖𝑛𝑡(𝐵). 

(v) Since 𝐴 ⊆ 𝐴⋃𝐵 and 𝐵 ⊆ 𝐴⋃𝐵, we have 𝑖𝑛𝑡(𝐴) ⊆ 𝑖𝑛𝑡(𝐴⋃𝐵) and 𝑖𝑛𝑡(𝐵) ⊆ 𝑖𝑛𝑡(𝐴⋃𝐵) 

by part (iii). Hence 𝑖𝑛𝑡(𝐴)⋃𝑖𝑛𝑡(𝐵) ⊆ 𝑖𝑛𝑡(𝐴⋃𝐵). 

(vi) By (i) of theorem, 𝑖𝑛𝑡(𝐴) is an open set. Hence by part (iii) of the same theorem  

𝑖𝑛𝑡(𝑖𝑛𝑡(𝐴)) = 𝑖𝑛𝑡(𝐴). 
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Exterior of a set  

Definition: Let (𝑋, 𝜏) be a topological space and let 𝐴 be a subset of 𝑋. A point 𝑥 ∈ 𝑋 is said 

to be an exterior point of 𝐴 iff it is an interior point of the complement of 𝐴, that is, iff there 

exists an open set 𝐺 such that 𝑥 ∈ 𝐺 ⊆ 𝐴𝑐 or equivalently 𝑥 ∈ 𝐺 and 𝐺⋂𝐴 = 𝜙. The set all 

exterior points of 𝐴 is called the exterior of 𝐴 and is denoted by 𝐴𝑒 or 𝑒(𝐴) or 𝑒𝑥𝑡(𝐴). 

i.e  𝑒𝑥𝑡(𝐴) = 𝑖𝑛𝑡(𝐴𝑐). 

 

Example: Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑} and let 𝜏 = {𝜙, {𝑎}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑋}. Find the exterior 

points of the set 𝐴 = {𝑏, 𝑐}. 

Solution: 𝑎 ∈ {𝑎}, {𝑎}⋂{𝑏, 𝑐} = 𝜙. 

∴ 𝑎 is exterior point of 𝐴. 

𝑏 ∈ 𝑋, 𝑋⋂{𝑏, 𝑐} = {𝑏, 𝑐} ≠ 𝜙. 

∴ 𝑏 is not exterior point of 𝐴. 

𝑐 ∈ {𝑎, 𝑐}, {𝑎, 𝑐}⋂{𝑏, 𝑐} = {𝑐} ≠ 𝜙. 

∴ 𝑐 is not exterior point of 𝐴. 

𝑑 ∈ {𝑎, 𝑑}, {𝑎, 𝑑}⋂{𝑏, 𝑐} = 𝜙. 

∴ 𝑑 is exterior point of 𝐴. 

𝑒𝑥𝑡(𝐴) = {𝑎, 𝑑}. 

 

Remark: (i) 𝐴⋂𝑒𝑥𝑡(𝐴) = 𝜙. 

(ii) 𝑒𝑥𝑡(𝐴) is open set and is the largest open set contained in 𝐴𝑐. 

 

Theorem: Let (𝑋, 𝜏) be a topological space and 𝐴 ⊆ 𝑋. Then 𝑒𝑥𝑡(𝐴) = ⋃{𝐺 ∈ 𝜏: 𝐺 ⊆ 𝐴𝑐}. 

Proof: By definition, 𝑒𝑥𝑡(𝐴) = 𝑖𝑛𝑡(𝐴𝑐) and since 𝑖𝑛𝑡(𝐴𝑐) = ⋃{𝐺 ∈ 𝜏: 𝐺 ⊆ 𝐴𝑐}.  

Hence 𝑒𝑥𝑡(𝐴) = ⋃{𝐺 ∈ 𝜏: 𝐺 ⊆ 𝐴𝑐}. 

 

Remark: (i) 𝑖𝑛𝑡(𝐴) = 𝑒𝑥𝑡(𝐴𝑐) = (𝑐𝑙(𝐴𝑐))𝑐. 

(ii) 𝑒𝑥𝑡(𝐴) = (𝑐𝑙(𝐴))𝑐. 

 

Properties of exterior  

Theorem: Let (𝑋, 𝜏) be a topological space and let 𝐴, 𝐵 be any subsets of 𝑋. Then: 

(i) 𝑒𝑥𝑡(𝑋) = 𝜙, 𝑒𝑥𝑡(𝜙) = 𝑋. 

(ii) 𝑒𝑥𝑡(𝐴) ⊆ 𝐴𝑐. 

(iii) 𝑒𝑥𝑡(𝐴) = 𝑒𝑥𝑡((𝑒𝑥𝑡(𝐴))𝑐). 

(iv) 𝐴 ⊆ 𝐵 ⟹ 𝑒𝑥𝑡(𝐵) ⊆ 𝑒𝑥𝑡(𝐴). 
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(v) 𝑖𝑛𝑡(𝐴) ⊆ 𝑒𝑥𝑡(𝑒𝑥𝑡(𝐴)). 

(vi) 𝑒𝑥𝑡(𝐴⋃𝐵) = 𝑒𝑥𝑡(𝐴)⋂𝑒𝑥𝑡(𝐵). 

Proof: (i) 𝑒𝑥𝑡(𝑋) = 𝑖𝑛𝑡(𝑋𝑐) = 𝑖𝑛𝑡(𝜙) = 𝜙. 

                 𝑒𝑥𝑡(𝜙) = 𝑖𝑛𝑡(𝜙𝑐) = 𝑖𝑛𝑡(𝑋) = 𝑋. 

(ii) 𝑒𝑥𝑡(𝐴) = 𝑖𝑛𝑡(𝐴𝑐) ⊆ 𝐴𝑐 by part (ii) of theorem [𝑖𝑛𝑡(𝐴) ⊆ 𝐴]. 

(iii) 𝑒𝑥𝑡((𝑒𝑥𝑡(𝐴))𝑐) = 𝑒𝑥𝑡((𝑖𝑛𝑡(𝐴𝑐))𝑐)        

                                  = 𝑖𝑛𝑡(((𝑖𝑛𝑡(𝐴𝑐))𝑐)𝑐)                              

                                  = 𝑖𝑛𝑡(𝑖𝑛𝑡(𝐴𝑐))     [ since (𝐴𝑐)𝑐 = 𝐴, 𝑖𝑛𝑡(𝑖𝑛𝑡(𝐴)) = 𝑖𝑛𝑡(𝐴)] 

                                  = 𝑖𝑛𝑡(𝐴𝑐) 

                                  = 𝑒𝑥𝑡(𝐴). 

(iv) 𝐴 ⊆ 𝐵 ⟹ 𝐵𝑐 ⊆ 𝐴𝑐 ⟹ 𝑖𝑛𝑡(𝐵𝑐) ⊆ 𝑖𝑛𝑡(𝐴𝑐) 

                                       ⟹ 𝑒𝑥𝑡(𝐵) ⊆ 𝑒𝑥𝑡(𝐴). 

(v) By part (ii), we have 𝑒𝑥𝑡(𝐴) ⊆ 𝐴𝑐. Then part (iv) gives 𝑒𝑥𝑡(𝐴𝑐) ⊆ 𝑒𝑥𝑡(𝑒𝑥𝑡(𝐴)).  

But 𝑖𝑛𝑡(𝐴) = 𝑒𝑥𝑡(𝐴𝑐). Hence 𝑖𝑛𝑡(𝐴) ⊆ 𝑒𝑥𝑡(𝑒𝑥𝑡(𝐴)). 

(vi) 𝑒𝑥𝑡(𝐴⋃𝐵) = 𝑖𝑛𝑡((𝐴⋃𝐵)𝑐) 

                          = 𝑖𝑛𝑡(𝐴𝑐⋂𝐵𝑐)  [By De-Morgan Law] 

                          = 𝑖𝑛𝑡(𝐴𝑐)⋂𝑖𝑛𝑡(𝐵𝑐)  By part (iv) of theorem [𝑖𝑛𝑡(𝐴⋂𝐵) = 𝑖𝑛𝑡(𝐴)⋂𝑖𝑛𝑡(𝐵)] 

                          = 𝑒𝑥𝑡(𝐴)⋂𝑒𝑥𝑡(𝐵).  

 

Frontier of a set  

Definition: Let (𝑋, 𝜏) be a topological space and let 𝐴 be a subset of 𝑋. A point 𝑥 ∈ 𝑋 is said 

to be a frontier point (or boundary point) of 𝐴 iff it is neither interior nor exterior point of 𝐴. 

The set all frontier points of 𝐴 is called the frontier of 𝐴 and is denoted by 𝐹𝑟𝑋(𝐴) or 𝐹𝑟(𝐴). 

i.e  𝐹𝑟(𝐴) = 𝑐𝑙(𝐴)⋂(𝑖𝑛𝑡(𝐴))𝑐. 

 

Example: Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑} and let 𝜏 = {𝜙, {𝑎}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑋}. Find the frontier 

points of the set 𝐴 = {𝑏, 𝑐}. 

Solution: 𝑐𝑙(𝐴) = 𝑐𝑙({𝑏, 𝑐}) = {𝑏, 𝑐}, 𝑖𝑛𝑡(𝐴) = 𝑖𝑛𝑡({𝑏, 𝑐}) = 𝜙. 

(𝑖𝑛𝑡(𝐴))𝑐 = 𝜙𝑐 = 𝑋. 

𝐹𝑟(𝐴) = 𝑐𝑙(𝐴)⋂(𝑖𝑛𝑡(𝐴))
𝑐
 

            = {𝑏, 𝑐}⋂𝑋 = {𝑏, 𝑐}. 

Hence 𝐹𝑟(𝐴) = {𝑏, 𝑐}. 
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Theorem: Let (𝑋, 𝜏) be a topological space and let 𝐴 be a subset of 𝑋. Then 𝑖𝑛𝑡(𝐴), 𝑒𝑥𝑡(𝐴) 

and 𝐹𝑟(𝐴) are disjoint. 

Proof: By definition 𝑒𝑥𝑡(𝐴) = 𝑖𝑛𝑡(𝐴𝑐). Also 𝑖𝑛𝑡(𝐴) ⊆ 𝐴 and 𝑖𝑛𝑡(𝐴𝑐) ⊆ 𝐴𝑐. 

Since 𝐴⋂𝐴𝑐 = 𝜙, it follows that 𝑖𝑛𝑡(𝐴)⋂𝑒𝑥𝑡(𝐴) = 𝑖𝑛𝑡(𝐴)⋂𝑖𝑛𝑡(𝐴𝑐) = 𝜙. 

A gain by the definition of frontier, we have  

                 𝑥 ∈ 𝐹𝑟(𝐴) ⟺ 𝑥 ∉ 𝑖𝑛𝑡(𝐴) and 𝑥 ∉ 𝑒𝑥𝑡(𝐴) 

                                   ⟺ 𝑥 ∉ 𝑖𝑛𝑡(𝐴)⋃𝑒𝑥𝑡(𝐴) 

                                   ⟺ 𝑥 ∈ [𝑖𝑛𝑡(𝐴)⋃𝑒𝑥𝑡(𝐴)]𝑐. 

Thus 𝐹𝑟(𝐴) = [𝑖𝑛𝑡(𝐴)⋃𝑒𝑥𝑡(𝐴)]𝑐. 

It follows that 𝐹𝑟(𝐴)⋂𝑖𝑛𝑡(𝐴) = 𝜙 and 𝐹𝑟(𝐴)⋂𝑒𝑥𝑡(𝐴) = 𝜙. 

Hence 𝑋 = 𝑖𝑛𝑡(𝐴)⋃𝑒𝑥𝑡(𝐴)⋃𝐹𝑟(𝐴). 

 

Example: Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and let 𝜏 = {𝜙, {𝑏}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, {𝑎, 𝑏, 𝑐, 𝑑}, 𝑋}. 

Find (1) interior (2) exterior (3) frontier of the following subsets of 𝑋:  

(i) 𝐴 = {𝑐}    (ii) 𝐵 = {𝑎, 𝑏}    (iii) 𝐶 = {𝑎, 𝑐, 𝑑}    (iv) 𝐷 = {𝑏, 𝑐, 𝑑}. 

Solution: H.W. 

 

Definition: Let (𝑋, 𝜏) be a topological space and let 𝐴, 𝐵 be subsets of 𝑋. Then:  

(i) 𝐴 is said to be dense in 𝐵 iff 𝐵 ⊆ 𝑐𝑙(𝐴). 

(ii) 𝐴 is said to be dense in 𝑋 or every where dense iff 𝑐𝑙(𝐴) = 𝑋.  

It follows that 𝐴 is everywhere dense iff every point of 𝑋 is an adherent point of 𝐴. 

(iii) 𝐴 is said to be no where dense or non dense in 𝑋 iff 𝑖𝑛𝑡(𝑐𝑙(𝐴)) = 𝜙. 

(iv) 𝐴 is said to be dense in itself iff 𝐴 ⊆ 𝐷(𝐴). 

 

Definition: A subset 𝐴 of a topological space (𝑋, 𝜏) is perfect iff 𝐴 is dense in itself and 

closed, that is, iff 𝐴 = 𝐷(𝐴). 

 

Definition: A topological space 𝑋 is said to be separable iff 𝑋 contains a countable dense 

subset, that is, iff there exists a countable subset 𝐴 of 𝑋 such that 𝑐𝑙(𝐴) = 𝑋. 

 

Example: The usual topological space (ℝ, U) is separable. 

Solution: Since the set ℚ of rational numbers is a countable dense subset of ℝ. 

ℚ ∈ ℝ which is countable and 𝑐𝑙(ℚ) = ℝ. 
 

Definition:  Let (𝑋, 𝜏) be a topological space and let 𝑌 be a subset of 𝑋 we may construct a 

topology 𝜏𝑌 for 𝑌 which is called the relative topology or the relativization  of 𝜏 to 𝑌. 
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Definition:  Let (𝑋, 𝜏) be a topological space and let 𝑌 be a subset of 𝑋 the 𝜏-relative 

topology for 𝑌 is the collection 𝜏𝑌 given by 𝜏𝑌 = {𝐺⋂𝑌: 𝐺 ∈ 𝜏}. 

 

Remark: The topological space (𝑌, 𝜏𝑌) is called a subspace of (𝑋, 𝜏) the topology 𝜏𝑌 on 𝑌 is 

called induced by 𝜏. 

 

Example: Consider the topology 𝜏 = {𝜙, {1}, {3,4}, {1,3,4}, 𝑋} on 𝑋 = {1,2,3,4} and the 

subset 𝑌 = {1,2,3} of 𝑋. 

Solution: Let 𝑌 = {1,2,3} ⊆ 𝑋. We then have 

𝜙⋂{1,2,3} = 𝜙,   {1}⋂{1,2,3} = {1},   {3,4}⋂{1,2,3} = {3},   {1,3,4}⋂{1,2,3} = {1,3} and 

𝑋⋂{1,2,3} = {1,2,3} = 𝑌. 

Hence the relativization of 𝜏 to 𝑌 is 𝜏𝑌 = {𝜙, {1}, {3}, {1,3}, 𝑌}. 

 

Theorem: Let (𝑋, 𝜏) be a topological space and let 𝑌 be a subset of 𝑋. Then the collection 

𝜏𝑌 = {𝐺⋂𝑌: 𝐺 ∈ 𝜏} is a topology on 𝑌. 

Proof: H.W. 

 

Definition: A property of a topological space is said to be hereditary if every subspace of the 

space has that property. 

 

Theorem: Let (𝑌, 𝒱) be a subspace of a topological space (𝑋, 𝜏) and let (𝑍, 𝒲) be a subspace 

of (𝑌, 𝒱). Then (𝑍, 𝒲) is a subspace of (𝑋, 𝜏). 

 

Theorem: Let (𝑌, 𝜏𝑌) be a subspace of a topological space (𝑋, 𝜏). Then: 

(i) a subset 𝐴 of 𝑌 is closed in 𝑌 iff there exists a closed set 𝐹 in 𝑋 such that 𝐴 = 𝐹⋂𝑌. 

(ii) for every 𝐴 ⊆ 𝑌, 𝑐𝑙𝑌(𝐴) = 𝑐𝑙𝑋(𝐴)⋂𝑌. 

(iii) a subset 𝑀 of 𝑌 is a 𝜏𝑌-nhd of a point 𝑦 ∈ 𝑌 iff 𝑀 = 𝑁⋂𝑌 for some 𝜏-nhd 𝑁 of 𝑦. 

(iv) a point 𝑦 ∈ 𝑌 is a 𝜏𝑌-limit point of 𝐴 ⊆ 𝑌 iff 𝑦 is a 𝜏-limit point of 𝐴, 𝐷𝑌(𝐴) = 𝐷(𝐴)⋂𝑌. 

(v) for every 𝐴 ⊆ 𝑌, 𝑖𝑛𝑡𝑌(𝐴) ⊇ 𝑖𝑛𝑡𝑋(𝐴). 

(vi) for every 𝐴 ⊆ 𝑌, 𝐹𝑟𝑌(𝐴) ⊆ 𝐹𝑟𝑋(𝐴). 

Proof: (i) 𝐴 is closed in 𝑌 ⟺ 𝑌 − 𝐴 is open in 𝑌 

                                           ⟺  𝑌 − 𝐴 = 𝐺⋂𝑌 for some open subset 𝐺 of 𝑋 

                                           ⟺  𝐴 = 𝑌 − (𝐺⋂𝑌) = (𝑌 − 𝐺)⋃(𝑌 − 𝑌)  [De-Morgan Law] 

                                           ⟺  𝐴 = 𝑌 − 𝐺  [since 𝑌 − 𝑌 = 𝜙] 

                                           ⟺  𝐴 = 𝑌⋂𝐺𝑐  

                                           ⟺  𝐴 = 𝑌⋂𝐹 where 𝐹 = 𝐺𝑐 is closed in 𝑋, since 𝐺 is open in 𝑋. 
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(ii) By definition, 𝑐𝑙𝑌(𝐴) = ⋂{𝐾: 𝐾 is closed in 𝑌 and 𝐴 ⊆ 𝐾} 

                                         = ⋂{𝐹⋂𝑌: 𝐹 is closed in 𝑋 and 𝐴 ⊆ 𝐹⋂𝑌} by (i)  

                                         = [⋂{𝐹: 𝐹 is closed in 𝑋 and 𝐴 ⊆ 𝐹}]⋂𝑌 

                                         = 𝑐𝑙𝑋(𝐴)⋂𝑌. 

(iii) H.W. 

(iv) 𝑦 is a 𝜏𝑌-limit point of 𝐴 ⟺ (𝑀 − {𝑦})⋂𝐴 ≠ 𝜙, ∀ 𝜏𝑌-nhd 𝑀 of 𝑦 

                                               ⟺ ((𝑁⋂𝑌) − {𝑦})⋂𝐴 ≠ 𝜙, ∀ 𝜏-nhd 𝑁 of 𝑦 by (iii) 

                                               ⟺ (𝑁 − {𝑦})⋂𝐴 ≠ 𝜙, ∀ 𝜏-nhd 𝑁 of 𝑦 

                                               ⟺  𝑦 is a 𝜏-limit point of 𝐴. 

(v) 𝑥 ∈ 𝑖𝑛𝑡𝑋(𝐴)  ⟹ 𝑥 is a 𝜏-interior point of 𝐴  

                            ⟹  𝐴 is a 𝜏-nhd of 𝑥 

                            ⟹  𝐴⋂𝑌 is a 𝜏𝑌-nhd of 𝑥 by (iii) 

                            ⟹  𝐴 is a 𝜏𝑌-nhd of 𝑥  [since 𝐴 ⊆ 𝑌 ⟹  𝐴⋂𝑌 = 𝐴] 

                            ⟹ 𝑥 ∈ 𝑖𝑛𝑡𝑌(𝐴). 

(vi) H.W. 

 

Example: Give an example to show that in general 𝑖𝑛𝑡𝑋(𝐴) ≠ 𝑖𝑛𝑡𝑌(𝐴). 

Solution: Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and let 𝜏 = {𝜙, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐, 𝑑}, {𝑎, 𝑏, 𝑒}, {𝑎, 𝑏, 𝑐, 𝑑}, 𝑋} be 

a topological space. Let 𝑌 = {𝑎, 𝑐, 𝑒}. Then 𝜏𝑌 = {𝐴⋂𝑌: 𝐴 ∈ 𝜏} so that the members of 𝜏𝑌 are:  

𝜙⋂𝑌 = 𝜙, {𝑎}⋂𝑌 = {𝑎}, {𝑎, 𝑏}⋂𝑌 = {𝑎}, {𝑎, 𝑐, 𝑑}⋂𝑌 = {𝑎, 𝑐}, {𝑎, 𝑏, 𝑒}⋂𝑌 = {𝑎, 𝑒}, 

{𝑎, 𝑏, 𝑐, 𝑑}⋂𝑌 = {𝑎, 𝑐} and 𝑋⋂𝑌 = 𝑌. Thus 𝜏𝑌 = {𝜙, {𝑎}, {𝑎, 𝑐}, {𝑎, 𝑒}, 𝑌}. 

Now consider the subset 𝐴 = {𝑎, 𝑒} of 𝑌. Then 𝑖𝑛𝑡𝑋(𝐴) = {𝑎} and 𝑖𝑛𝑡𝑌(𝐴) = {𝑎, 𝑒}. 

 

Theorem: Let 𝑌 be a subspace of a topological space 𝑋. If 𝐴 ⊆ 𝑌 is open (closed) in 𝑋, then 

𝐴 is also open (closed) in 𝑌. 

Proof: H.W. 
 

Theorem: Let (𝑌, 𝜏𝑌) be a subspace of a topological space (𝑋, 𝜏) and let 𝛽 be a base for 𝜏. 

Then 𝛽𝑌 = {𝐵⋂𝑌: 𝐵 ∈ 𝛽} is a base for 𝜏𝑌. 

Proof: Let 𝐻 be a 𝜏𝑌-open subset of 𝑌 and let 𝑥 ∈ 𝐻. Then there exists a 𝜏-open subset 𝐺 of 

𝑋 such that 𝐻 = 𝐺⋂𝑌. Since 𝛽 is a base for 𝜏, there exists a set 𝐵 ∈ 𝛽 such that 𝑥 ∈ 𝐵 ⊆ 𝐺. 

Since 𝐻 ⊆ 𝑌, it follows that 𝑥 ∈ 𝑌 and consequently 𝑥 ∈ 𝐵⋂𝑌 ⊆ 𝐺⋂𝑌 = 𝐻. Thus to each 

𝑥 ∈ 𝐻, there exists a member 𝐵⋂𝑌 of 𝛽𝑌 such that 𝑥 ∈ 𝐵⋂𝑌 ⊆ 𝐻, that is, 𝐻 =

⋃{𝐵⋂𝑌: 𝐵⋂𝑌 ∈ 𝛽𝑌 and 𝐵⋂𝑌 ⊆ 𝐻}. Hence 𝛽𝑌 is a base for 𝜏𝑌. 


