Republic of Iraq
Ministry of Higher Education and Scientific Research
Muthanna University
College of Education for Pure Science
Department of Mathematics

General Topology

Academic Year 2016-2017

Lecturer

Lect. Qays Hatem Imran

Chapter One

Topological Spaces

Definition: Let X be a non-empty set and let τ be a collection of subsets of X satisfying the following three conditions:

- (i) $\phi \in \tau$, $X \in \tau$.
- (ii) If $G_1 \in \tau$ and $G_2 \in \tau$, then $G_1 \cap G_2 \in \tau$.
- (iii) If $G_{\lambda} \in \tau$ for every $\lambda \in \Lambda$ where Λ is an arbitrary set, then $\bigcup \{G_{\lambda} : \lambda \in \Lambda\} \in \tau$.

Then τ is called a topology for X, the members of τ are called τ -open (or simply open) sets and the pair (X, τ) is called a topological space. The elements of X will be called points of the space.

Remark: The union of empty collection of sets is empty. i.e $\bigcup \{A_{\lambda} : \lambda \in \phi\} = \phi$ and the intersection of empty collection of subsets of X is X itself. i.e $\bigcap \{A_{\lambda} : \lambda \in \phi\} = X$.

Remark: The three conditions (i), (ii) and (iii) are equivalent to the following two conditions:

- (1) The intersection of an arbitrary finite number of open sets is open.
- (2) The union of arbitrary collection of open sets is open.

Example: Let $X = \{a, b, c\}$ and consider the following collections of the subsets of X:

$$\tau_1 = \{\phi, X\},\,$$

$$\tau_2 = \{\phi, \{a\}, \{b, c\}, X\},\$$

$$\tau_3 = \{\phi, \{a\}, \{b\}, X\},\$$

$$\tau_4 = \{\phi, \{a\}, X\},$$

$$\tau_5 = {\phi, \{a\}, \{b\}, \{a, b\}, X\},}$$

$$\tau_6 = \{\phi, \{a, b\}, X\},\$$

$$\tau_7 = \{\phi, \{b\}, \{a, b\}, X\},\$$

$$\tau_8 = \{\{a\}, \{b, c\}, X\},\$$

$$\tau_9 = \{\phi, \{a\}, \{b\}, \{a, b\}\},\$$

$$\tau_{10} = \{\phi, \{a, b\}, \{b, c\}, X\}.$$

Then $\tau_1, \tau_2, \tau_4, \tau_5, \tau_6$ and τ_7 are all topologies for X, since they satisfy all the conditions (i), (ii) and (iii).

Let us verify these axioms for τ_7 .

(i)
$$\phi$$
, $X \in \tau_7$

(ii)
$$\phi \cap \{b\} = \phi \cap \{a, b\} = \phi \cap X = \phi \in \tau_7, \{b\} \cap \{a, b\} = \{b\} \cap X = \{b\} \in \tau_7$$

and $\{a, b\} \cap X = \{a, b\} \in \tau_7$.

(iii)
$$\phi \cup \{b\} = \{b\} \in \tau_7$$
, $\phi \cup \{a, b\} = \{a, b\} \in \tau_7$, $\phi \cup X = X \in \tau_7$, $\{b\} \cup \{a, b\} = \{a, b\} \in \tau_7$, $\{b\} \cup X = X \in \tau_7$, $\{a, b\} \cup X = X \in \tau_7$ and $\{b\} \cup \{a, b\} \cup X = X \in \tau_7$.

 τ_3 is not a topology for X since $\{a\} \in \tau_3$ and $\{b\} \in \tau_3$ but $\{a\} \cup \{b\} = \{a, b\} \notin \tau_3$ and so it does not satisfy (iii).

 τ_8 is not a topology for *X* since $\phi \notin \tau_8$ and so it does not satisfy (i).

 τ_9 is not a topology for X since $X \notin \tau_9$ and so it does not satisfy (i).

 τ_{10} is not a topology for X since $\{a,b\} \in \tau_{10}$ and $\{b,c\} \in \tau_{10}$ but $\{a,b\} \cap \{b,c\} = \{b\} \notin \tau_{10}$ and so it does not satisfy (ii).

Example: Let X be a non-empty set. Then the collection $I = \{\phi, X\}$ consisting of the empty set and the whole space is always a topology for X called the indiscrete (or trivial) topology. The pair (X, I) is called an indiscrete topological space.

Example: Let X be a non-empty set and let D be the collection of all subsets of X, the D is a topology for X called the discrete topology. The pair (X, D) is called a discrete topological space.

Solution: Since $\phi \subseteq X$, $X \subseteq X$, we have $\phi \in D$ and $X \in D$ so that (i) is satisfied, (ii) also holds since the intersection of two subsets of X a gain a subset of X. Similarly (iii) is satisfied since the union of any collection of subsets of X is a gain a subset of X.

Example: Let X be a non-empty set and let τ be the collection of all those subsets of X whose complements are finite together with the empty set, that is, a subset A of X belongs to τ iff A is empty or A^c is finite. Then τ is a topology for X called the co-finite topology or the finite complement topology.

Solution: (i) Since $X^c = \phi$ which is finite, we have $X \in \tau$. Also $\phi \in \tau$ be definition.

(ii)
$$G_1, G_2 \in \tau \Longrightarrow G_1^{\ c}, G_2^{\ c}$$
 are finite
$$\Longrightarrow G_1^{\ c} \cup G_2^{\ c} \text{ is finite}$$

$$\Longrightarrow (G_1 \cap G_2)^c \text{ is finite [By De-Morgan law]}$$

$$\Longrightarrow G_1 \cap G_2 \in \tau.$$
 (iii) $G_{\lambda} \in \tau, \forall \lambda \in \Lambda \Longrightarrow G_{\lambda}^{\ c} \text{ is a finite, } \forall \lambda \in \Lambda$

$$\Rightarrow \bigcap \{G_{\lambda}^{c} : \lambda \in \Lambda\} \text{ is a finite}$$

$$\Rightarrow [\bigcup \{G_{\lambda} : \lambda \in \Lambda\}]^{c} \text{ is a finite [By De-Morgan law]}$$

$$\Rightarrow \bigcup \{G_{\lambda} : \lambda \in \Lambda\} \in \tau.$$

Hence τ is co-finite topology for X.

Example: Let X be a non-empty set and let τ be consist of all those subsets of X whose complements are countable sets together with the empty set. Then τ is a topology for X called the co-countable topology.

Example: Let U consist of ϕ and all those subsets G of \mathbb{R} having the property that to each $x \in G$ there exists $\varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon) \subseteq G$. Then U is a topology for \mathbb{R} called the usual topology.

Solution: (i) $\phi \in U$ by definition. Also $\mathbb{R} \in U$ since for each $x \in \mathbb{R}$, $(x - 1, x + 1) \subseteq \mathbb{R}$. In fact for any $\varepsilon > 0$, $(x - \varepsilon, x + \varepsilon) \subseteq \mathbb{R}$.

(ii) Let $G_1, G_2 \in U$. If $G_1 \cap G_2 = \phi$, there is nothing to prove.

If $G_1 \cap G_2 \neq \phi$, let $x \in G_1 \cap G_2$. Then $x \in G_1$ and $x \in G_2$. Hence there exist $\varepsilon_1 > 0$ and $\varepsilon_2 > 0$ such that $(x - \varepsilon_1, x + \varepsilon_1) \subseteq G_1$ and $(x - \varepsilon_2, x + \varepsilon_2) \subseteq G_2$. Take $\varepsilon = min\{\varepsilon_1, \varepsilon_2\}$. Then $\varepsilon > 0$ and $(x - \varepsilon, x + \varepsilon) \subseteq G_1 \cap G_2$. Hence $G_1 \cap G_2 \in U$.

(iii) Let $\{G_{\lambda} : \lambda \in \Lambda\}$ be an arbitrary collection of members of U and let $x \in \bigcup \{G_{\lambda} : \lambda \in \Lambda\}$. Then $x \in G_{\lambda}$ for some $\lambda \in \Lambda$. Since $G_{\lambda} \in \mathbb{U}$, there exists $\varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon) \subseteq G_{\lambda}$. But then $(x - \varepsilon, x + \varepsilon) \subseteq \bigcup \{G_{\lambda} : \lambda \in \Lambda\}$. Therefore $\bigcup \{G_{\lambda} : \lambda \in \Lambda\} \in \mathbb{U}$.

Hence U is a topology for \mathbb{R} .

Example: Every open interval on \mathbb{R} is a U-open set.

Solution: Let (a, b) be any interval on \mathbb{R} and let $x \in (a, b)$. Take $\varepsilon = min\{x - a, b - x\}$. Then it is easy to see that $(x - \varepsilon, x + \varepsilon) \subseteq (a, b)$. Hence (a, b) is a U-open set.

Example: Let τ_1 and τ_2 be the collections of subsets of \mathbb{R} defined respectively as follows:

- (1) $\phi \in \tau_1$, $\mathbb{R} \in \tau_1$ and all open infinite intervals $G_r = (r, \infty)$ with $r \in \mathbb{R}$ belong to τ_1 .
- (2) $\phi \in \tau_2$, $\mathbb{R} \in \tau_2$ and all open infinite intervals $G_q = (q, \infty)$ with $q \in \mathbb{Q}$ belong to τ_2 .

Then τ_1 is a topology for \mathbb{R} but τ_2 is not a topology for \mathbb{R} .

Solution: (1) (i) $\phi \in \tau_1$ and $\mathbb{R} \in \tau_1$ by definition.

- (ii) Let $G_r \in \tau_1$ and $G_s \in \tau_1$ with $r, s \in \mathbb{R}$, $G_r \cap G_s = G_r$ or G_s according as $r \geq s$ or $r \leq s$. Hence $G_r \cap G_s \in \tau_1$.
- (iii) Let $G_{\lambda} \in \tau_1$ for every $\lambda \in \Lambda$ where Λ is some set of real numbers. We have to show that $\bigcup \{G_{\lambda} : \lambda \in \Lambda\} \in \tau_1$.

If Λ is not bounded below so that $\inf(\Lambda) = -\infty$, then $\bigcup \{G_{\lambda} : \lambda \in \Lambda\} = \mathbb{R} \in \tau_1$.

If Λ is bounded below so that $\inf(\Lambda) = r_0(r_0 \in \mathbb{R})$ exists, then $\bigcup \{G_{\lambda} : \lambda \in \Lambda\} = (r_0, \infty) = G_{r_0}$. Hence in either case, $\bigcup \{G_{\lambda} : \lambda \in \Lambda\} \in \tau_1$.

Therefore τ_1 is a topology for \mathbb{R} .

(2) Let G_q with $q \in \mathbb{Q}$ belong to τ_2 for all $q > \sqrt{2}$. Then $\bigcup \{G_q : q \in \mathbb{Q}, q > \sqrt{2}\} = (\sqrt{2}, \infty)$ which does not belong to τ_2 , since $\sqrt{2}$ is not a rational number. Hence τ_2 is not a topology for \mathbb{R} .

Example: Let τ be the collection of subsets of \mathbb{N} consisting of empty set and all subsets of \mathbb{N} of the form $G_m = \{m, m+1, m+2, \dots\}$, $m \in \mathbb{N}$. Then τ is a topology for \mathbb{N} .

Theorem: Let $\{\tau_{\lambda} : \lambda \in \Lambda\}$ where Λ is an arbitrary set, be a collection of topologies for X. Then the intersection $\bigcap \{\tau_{\lambda} : \lambda \in \Lambda\}$ is also a topology for X.

Proof: Let $\{\tau_{\lambda} : \lambda \in \Lambda\}$ be a collection of topologies on X. We have to show that $\bigcap \{\tau_{\lambda} : \lambda \in \Lambda\}$ is also a topology on X.

If $\Lambda = \phi$, then $\bigcap \{\tau_{\lambda} : \lambda \in \phi\} = P(X)$. Thus in this case the intersection of topologies is the discrete topology.

Now let $\Lambda \neq \phi$.

(i) Since τ_{λ} is a topology for every $\lambda \in \Lambda$, it follows that $\phi, X \in \tau_{\lambda}$ for every $\lambda \in \Lambda$.

But $\phi \in \tau_{\lambda}$ for every $\lambda \in \Lambda \Longrightarrow \phi \in \bigcap \{\tau_{\lambda} : \lambda \in \Lambda\}$, and

 $X \in \tau_{\lambda}$ for every $\lambda \in \Lambda \Longrightarrow X \in \bigcap \{\tau_{\lambda} : \lambda \in \Lambda\}$.

- (ii) Let $G_1, G_2 \in \bigcap \{\tau_{\lambda} : \lambda \in \Lambda\}$. Then $G_1, G_2 \in \tau_{\lambda}$ for every $\lambda \in \Lambda$. Since τ_{λ} is a topology for X for every $\lambda \in \Lambda$, it follows that $G_1 \cap G_2 \in \tau_{\lambda}$ for every $\lambda \in \Lambda$. Hence $G_1 \cap G_2 \in \bigcap \{\tau_{\lambda} : \lambda \in \Lambda\}$.
- (iii) Let $G_{\alpha} \in \bigcap \{\tau_{\lambda} : \lambda \in \Lambda\}$ for all $\alpha \in \Delta$ where Δ is an arbitrary set. Then $G_{\alpha} \in \tau_{\lambda}$, $\forall \lambda \in \Lambda$ and $\forall \alpha \in \Delta$. Since each τ_{λ} is a topology for X, it follows that $\bigcup \{G_{\alpha} : \alpha \in \Delta\} \in \tau_{\lambda}$, $\forall \lambda \in \Lambda$. Hence $\bigcup \{G_{\alpha} : \alpha \in \Delta\} \in \bigcap \{\tau_{\lambda} : \lambda \in \Lambda\}$. Thus $\bigcap \{\tau_{\lambda} : \lambda \in \Lambda\}$ is a topology for X.

Remark: The union of topologies is not necessarily a topology on *X*.

Example: Let $X = \{a, b, c\}$. Consider two topologies τ_1 and τ_2 for X defined as follows: $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then $\tau_1 \cup \tau_2 = \{\phi, \{a\}, \{b\}, X\}$ which is not a topology for X.

Definition: Let τ_1 and τ_2 be two topologies for a non-empty set X, we say that τ_1 is coarser (or weaker or smaller) than τ_2 or that τ_2 is finer (or stronger or larger) than τ_1 iff $\tau_1 \subseteq \tau_2$ that is iff every τ_1 -open set is τ_2 -open set.

If either $\tau_1 \subseteq \tau_2$ or $\tau_2 \subseteq \tau_1$, then we say that τ_1 and τ_2 are comparable.

If $\tau_1 \not\subseteq \tau_2$ and $\tau_2 \not\subseteq \tau_1$, then we say that τ_1 and τ_2 are not comparable

Example: For a non-empty set X, the indiscrete topology I is the coarser topology and the discrete topology D is the finer topology.

Example: Let $X = \{a, b, c\}$. Consider three topologies τ_1 , τ_2 and τ_3 for X defined as follows:

 $\tau_1 = {\phi, \{a\}, X\}, \ \tau_2 = {\phi, \{b\}, X\}} \text{ and } \tau_3 = {\phi, \{a\}, \{a, b\}, \{a, c\}, X\}.$

Since $\tau_1 \not\subseteq \tau_2$ and $\tau_2 \not\subseteq \tau_1$, then τ_1 and τ_2 are not comparable.

Since $\tau_2 \not\subseteq \tau_3$ and $\tau_3 \not\subseteq \tau_2$, then τ_2 and τ_3 are not comparable.

Since $\tau_1 \subseteq \tau_3$, then τ_1 and τ_3 are comparable.

Since $\tau_1 \subseteq \tau_3$, then τ_1 is coarser than τ_3 or τ_3 is finer than τ_1 .

Metric topologies

Theorem: Let (X, d) be any metric space and let τ_d consist of ϕ and those subsets G of X having the property that to each $x \in G$ there exists r > 0 such that the open ball B(x, r) is contained in G. Then τ_d is a topology for X.

Proof: (i) $\phi \in \tau_d$ by definition. Also to each $x \in X$, $B(x, 1) \subseteq X$, showing that $X \in \tau_d$.

(ii) Let $G_1, G_2 \in \tau_d$ and let $x \in G_1 \cap G_2$. Then $x \in G_1$ and $x \in G_2$. Hence there exist $r_1 > 0$ and $r_2 > 0$ such that $B(x, r_1) \subseteq G_1$ and $B(x, r_2) \subseteq G_2$.

Let $r = min\{r_1, r_2\}$. Then $B(x, r) \subseteq G_1 \cap G_2$ and therefore $G_1 \cap G_2 \in \tau_d$.

(iii) Let Ω be an arbitrary collection of members of τ_d and let $x \in U\Omega$. Then $x \in G$ for some $G \in \Omega$. Since $G \in \tau_d$, there exists r > 0 such that $B(x,r) \subseteq G$. But $B(x,r) \subseteq U\Omega$ and therefore $U\Omega \in \tau_d$. Hence τ_d is a topology for X.

Remark: Every open ball in a metric space (X, d) is an open set with respect to the d-metric topology for X.

Definition: A topological space (X, τ) is said to be metrizable iff there exists a metric d for X such that $\tau_d = \tau$. i.e d-metric topology for X is the same as τ .

Example: Let $X = \{a, b\}$, $a \neq b$. Define $\tau = \{\phi, \{a\}, X\}$. Then τ is a topology for X.

The topological space (X, τ) is not metrizable.

Solution: Let d be any metric space for X and let d(a, b) = r. Since $a \neq b, r > 0$.

Then $B(a,r) = \{a\} \in \tau$ and $B(b,r) = \{b\} \notin \tau$. Hence (X,τ) is not metrizable.

Example: Show that the usual metric for \mathbb{R} induces usual topology for \mathbb{R} .

Example: Show that the discrete metric on a set X induces the discrete topology for X.

Closed sets

Definition: Let (X, τ) be a topological space. A subset F of X is said to be τ -closed if and only if its complement F^c is open.

Remark: Since ϕ is open, it follows that $\phi^c = X$ is closed. Similarly since X is open, $X^c = \phi$ is closed. Thus ϕ and X are open as well as closed in every topological space.

Example: Let $X = \{a, b, c\}$ and let $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ be a topology for X.

Solution: Since $\{a\}^c = \{b, c\}$, $\{b, c\}^c = \{a\}$, it follows that the closed sets are:

 $X, \{b, c\}, \{a\}, \phi$.

Example: If $a \in \mathbb{R}$, then $\{a\}$ is a closed set in the usual topology for \mathbb{R} .

Solution: $\{a\}^c = (-\infty, a) \cup (a, \infty)$.

But $(-\infty, a)$ and (a, ∞) are U-open sets. Hence their union is also U-open.

It follows that $\{a\}^c$ is U-open. Therefore $\{a\}$ is U-closed.

Example: Let $a, b \in \mathbb{R}$ where a < b. Then the closed interval [a, b] is closed set the usual topology for \mathbb{R} .

Solution: $[a, b]^c = \{x \in \mathbb{R} : x < a \text{ or } x > b\}$ = $(-\infty, a) \cup (b, \infty)$

which is U-open, being the union of two U-open sets. Hence [a, b] is U-closed.

Definition: A topological space (X, τ) is said to be a door space iff every subset of X is either open or closed.

Example: Let $X = \{a, b, c\}$ and let $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$.

Then closed sets are X, $\{a, c\}$, $\{c\}$, $\{a\}$, ϕ . Hence all the subsets of X are either open or closed and consequently (X, τ) is a door space.

Theorem: If $\{F_{\lambda}: \lambda \in \Lambda\}$ is any collection of closed subsets of a topological space X, then $\bigcap \{F_{\lambda}: \lambda \in \Lambda\}$ is a closed set.

Proof: F_{λ} is closed, $\forall \lambda \in \Lambda \Longrightarrow F_{\lambda}^{c}$ is open, $\forall \lambda \in \Lambda$

⇒
$$\bigcup \{F_{\lambda}^{c}: \lambda \in \Lambda\}$$
 is open [By part (iii) of the definition of topology]
⇒ $[\bigcap \{F_{\lambda}: \lambda \in \Lambda\}]^{c}$ is open [By De-Morgan law]
⇒ $\bigcap \{F_{\lambda}: \lambda \in \Lambda\}$ is a closed [By definition of closed sets].

Theorem: If F_1 and F_2 are two closed subsets of a topological space (X, τ) . Then $F_1 \cup F_2$ is a closed set.

Proof:
$$F_1$$
, F_2 are closed $\Rightarrow F_1^c$, F_2^c are open
$$\Rightarrow F_1^c \cap F_2^c \text{ is open [By part (ii) of the definition of topology]}$$
$$\Rightarrow [F_1 \cup F_2]^c \text{ is open [By De-Morgan law]}$$
$$\Rightarrow F_1 \cup F_2 \text{ is closed.}$$

Remark: Note that if F_1, F_2, \dots, F_n be a finite number of closed subsets of X, then their union will also be a closed subset of X.

Remark: The union of an infinite collection of closed sets in a topological space is not necessarily closed.

Example: Let (\mathbb{R}, \mathbb{U}) be the usual topological space and let $F_n = [\frac{1}{n}, 1]$, $n \in \mathbb{N}$ so that F_n is a closed interval on \mathbb{R} .

Solution: F_n is a U-closed set. Now

$$\mathsf{U}\{F_n:n\in\mathbb{N}\} = \{1\} \mathsf{U}[\tfrac{1}{2},1] \mathsf{U}[\tfrac{1}{3},1] \mathsf{U}[\tfrac{1}{4},1] \ldots \ldots = (0,1]$$

Since (0,1] is not closed, it follows that the union of an infinite collection of closed sets is not necessarily closed.

Example: Every finite subset of \mathbb{R} is a U-closed set.

Theorem: Let *X* be a non-empty set and *F* be a family of subsets of *X* such that

- (i) $\phi \in F$ and $X \in F$
- (ii) $F_1, F_2 \in \mathbb{F} \implies F_1 \cup F_2 \in \mathbb{F}$.
- (iii) $F_{\lambda} \in F$, $\forall \lambda \in \Lambda \Longrightarrow \bigcap \{F_{\lambda} : \lambda \in \Lambda\} \in F$.

Then there exists a unique topology for X such that the τ -closed subsets of X are precisely the members of F.

Proof: H.W.

Neighbourhoods

Definition: Let (X, τ) be a topological space and let $x \in X$. A subset N of X is said to be a τ -neighbourhood (briefly τ -nhd) of x iff there exists a τ -open set G such that $x \in G \subseteq N$.

Similarly N is called a τ -nhd of $A \subseteq X$ iff there exists an open set G such that $A \subseteq G \subseteq N$.

The collection of all τ -neighbourhoods of $x \in X$ is called the neighbourhood system at x and shall be denoted by N(x).

Remark: (i) τ -open set is a τ -neighbourhood of each of its points.

- (ii) τ -neighbourhood of a point need not be a τ -open set.
- (iii) every open set containing x is a nhd of x.

Example: Let $X = \{1,2,3\}$ and let $\tau = \{\phi,\{1\},\{2,3\},X\}$ be a topology for X. Find the nhd system of 1,2,3.

s Hatem imra **Solution:** Then all subsets of *X* are: ϕ , {1}, {2}, {3}, {1,2}, {1,3}, {2,3} and *X*.

$$N(1) = \{\{1\}, \{1,2\}, \{1,3\}, X\},$$

$$N(2) = \{\{2,3\}, X\},\$$

$$N(3) = \{\{2,3\}, X\}.$$

Example: Let $X = \{1,2,3,4,5\}$ and let $\tau = \{\phi, \{1\}, \{1,2\}, \{1,2,5\}, \{1,3,4\}, \{1,2,3,4\}, X\}$ be a topology for X. Find the nhd system of 1,2,3,4,5.

Solution: H.W.

Theorem: A subset of a topological space is open if and only if it is a neighbourhood of each of its points.

Proof: Let G be an open subset of a topological space. Then for every $x \in G$ such that $x \in G$ $G \subseteq G$ and therefore G is a nhd of each of its points.

Conversely, let G be a nhd of each of its points. If $G = \phi$, then it is open.

If $G \neq \phi$, then to each $x \in G$ there exists an open set G_x such that $x \in G_x \subseteq G$. It follows that $G = \bigcup \{G_x : x \in G\}$. Hence G is open, being a union of open sets.

Properties of neighbourhoods

Theorem: Let X be a topological space, and for each $x \in X$, let N(x) be the collection of all nhds of x. Then:

 $(1) \forall x \in X, N(x) \neq \phi$

i.e every point x has at least one neighbourhood.

 $(2) N \in N(x) \implies x \in N$

i.e every neighbourhood of x contains x.

 $(3) N \in N(x), N \subseteq M \Longrightarrow M \in N(x)$

i.e every set containing a neighbourhood of x is a neighbourhood of x.

(4) $N \in N(x), M \in N(x) \Rightarrow N \cap M \in N(x)$

i.e the intersection of two neighbourhoods of x is a neighbourhood of x.

(5) $N \in N(x) \implies \exists M \in N(x)$ such that $M \subseteq N$ and $M \in N(y) \ \forall y \in M$

i.e if N is a neighbourhood of x, then there exists a neighbourhood M of x which is a subset of N such that M is a neighbourhood of each of its points.

Proof: (1) Since X is an open set, it is a nhd of every $x \in X$. Hence there exists at least one nhd (namely X) for each $x \in X$. Hence $N(x) \neq \phi, \forall x \in X$.

- (2) If $N \in N(x)$, then N is a nhd of x. So by definition of nhd, $x \in N$.
- (3) If $N \in N(x)$, then there is an open set G such that $x \in G \subseteq N$. Since $N \subseteq M$, $x \in G \subseteq M$ and so M is a nhd of x. Hence $M \in N(x)$.
- (4) Let $N \in N(x)$ and $M \in N(x)$. Then by definition of nhd, there exist open sets G_1 and G_2 such that $x \in G_1 \subseteq N$ and $x \in G_2 \subseteq M$. Hence $x \in G_1 \cap G_2 \subseteq N \cap M$(1)

Since $G_1 \cap G_2$ is open set, it follows from (1) that $N \cap M$ is a nhd of x. Hence $N \cap M \in N(x)$.

(5) If $N \in N(x)$, then there exists an open set M such that $x \in M \subseteq N$. Since M is open set, it is a nhd of each of its points. Therefore $M \in N(y) \ \forall y \in M$.

Theorem: Let X be a non-empty set and for each $x \in X$, let N(x) be a non-empty collection of subsets of X satisfying the following conditions:

- (1) $N \in N(x) \implies x \in N$
- (2) $N \in N(x), M \in N(x) \Longrightarrow N \cap M \in N(x)$.

Let τ consist of the empty set and all those non-empty subsets G of X having the property that $x \in G$ implies that there exists an $N \in N(x)$ such that $x \in N \subseteq G$. Then τ is a topology for X.

Proof: (i) $\phi \in \tau$ by definition. We now show that $X \in \tau$.

Let $x \in X$. Since $N(x) \neq \phi$, there is an $N \in N(x)$ and so $x \in N$ by (1). Since N is a subset of X, we have $x \in N \subseteq X$. Hence $X \in \tau$.

(ii) Let $G_1, G_2 \in \tau$. If $x \in G_1 \cap G_2$, then $x \in G_1$ and $x \in G_2$. Since $G_1 \in \tau$ and $G_2 \in \tau$, there exist $N \in N(x)$ and $M \in N(x)$ such that $x \in N \subseteq G_1$ and $x \in M \subseteq G_2$. Then $x \in N \cap M \subseteq G_1 \cap G_2$. But $N \cap M \in N(x)$ by (2). Hence $G_1 \cap G_2 \in \tau$.

(iii) Let $G_{\lambda} \in \tau, \forall \lambda \in \Lambda$. If $x \in \bigcup \{G_{\lambda} : \lambda \in \Lambda\}$, then $x \in G_{\lambda_x}$ for some $\lambda_x \in \Lambda$. Since $G_{\lambda_x} \in \tau$, there exists an $N \in N(x)$ such that $x \in N \subseteq G_{\lambda_x}$ and consequently $x \in N \subseteq \bigcup \{G_{\lambda} : \lambda \in \Lambda\}$. Hence $\bigcup \{G_{\lambda} : \lambda \in \Lambda\} \in \tau$. It follows that τ is a topology for X.

Definition: Let (X, τ) be a topological space. A non-empty collection $\beta(x)$ of τ -nhds of x is called a base for the τ -neighbourhood system of x iff for every τ -neighbourhood N of x there is $B \in \beta(x)$ such that $B \subseteq N$. We then also say that $\beta(x)$ is a local base at x or a fundamental system of neighbourhoods of x.

If $\beta(x)$ is a local base at x, then the members of $\beta(x)$ are called basic τ -neighbourhoods of x.

Example: Let $X = \{a, b, c, d, e\}$ and let $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}, X\}$ be a topology for X.

Then a local base at each of the points a, b, c, d, e is given by:

$$\beta(a) = \{\{a\}\}, \quad \beta(b) = \{\{a,b\}\}, \quad \beta(c) = \{\{a,c,d\}\},$$

$$\beta(d) = \{\{a,c,d\}\}, \quad \beta(e) = \{\{a,b,e\}\}.$$

Observe that here a local base at each point consists of a single τ -nhd of the point.

Note that $\{\{a, b\}\}\$ does not form a local base at a. (Why?)

Example: Consider the usual topology U for \mathbb{R} and any point $x \in \mathbb{R}$. Then the collection $\beta(x) = \{(x - \varepsilon, x + \varepsilon) : 0 < \varepsilon \in \mathbb{R}\}$ constitutes a base for the U-neighbourhood system of x. **Solution:** Let N be any nhd of x. Then there exists a U-open set G such that $x \in G \subseteq N$. Since G is U-open, $\exists \varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon) \subseteq G \subseteq N$. Thus to each nhd N of x, \exists a member $(x - \varepsilon, x + \varepsilon)$ of $\beta(x)$ such that $(x - \varepsilon, x + \varepsilon) \subseteq N$.

Definition: A topological space (X, τ) is said to satisfy the first axiom of countability if each point of X possesses a countable local base. Such a topological space is said to be a first countable space.

Example: A discrete topological space (X, D) is first countable space.

Example: The usual topological space (\mathbb{R}, \mathbb{U}) is first countable space.

Solution: Let $x \in \mathbb{R}$. Then the collection $\{(x - \frac{1}{n}, x + \frac{1}{n}) : n \in \mathbb{N}\}$ is a countable base at x and so (\mathbb{R}, \mathbb{U}) is first countable.

Properties of local base

Theorem: Let (X, τ) be a topological space and let $\beta(x)$ be a local base at any point x of X. Then $\beta(x)$ has the following properties:

- (1) $\beta(x) \neq \phi$ for every $x \in X$
- (2) If $B \in \beta(x)$, then $x \in B$
- (3) If $A \in \beta(x)$ and $B \in \beta(x)$, then there exists a $C \in \beta(x)$ such that $C \subseteq A \cap B$
- (4) If $A \in \beta(x)$, then there exists a set B such that $x \in B \subseteq A$ and $\forall y \in B, \exists C \in \beta(y)$ satisfying $C \subseteq B$.

Definition: Let (X, τ) be a topological space. A collection β of subsets of X is said to form a base for τ if and only if

- (i) $\beta \subseteq \tau$,
- (ii) for each point $x \in X$ and each nhd N of x there exists some $B \in \beta$ such that $x \in B \subseteq N$.

Example: Let $X = \{a, b, c, d\}$ and let $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$ be a topology for X.

Then the collection $\beta = \{\{a\}, \{b\}, \{c, d\}\}\$ is a base for τ since

- (i) $\beta \subseteq \tau$ and
- (ii) Each nhd of a contains $\{a\}$ with a member of β containing a. Similarly each nhd of b contains $\{b\} \in \beta$ and each nhd of c or d contains $\{c, d\} \in \beta$.

Definition: Let (X, τ) be a topological space. The space is said to be second countable iff there exists a countable base for τ .

Example: The usual topological space (\mathbb{R}, \mathbb{U}) is second countable space.

Theorem: Let (X, τ) be a topological space. A sub collection β of τ is a base for τ iff every τ -open set can be expressed as the union of members of β .

Proof: Let β be a base for τ and let $G \in \tau$. Since G is τ -open, it is a τ -nhd of each of its points. Hence by definition of base, $\forall x \in G$, $\exists B \in \beta$ such that $x \in B \subseteq G$. It follows that $G = \bigcup \{B : B \in \beta \text{ and } B \subseteq G\}$.

Conversely, let $\beta \subseteq \tau$ and let every open set G be the union of members of β . We have to show that β is a base for τ . We have

(i) $\beta \subseteq \tau$ (given)

(ii) Let $x \in X$ and let N be any nhd of x. Then there exists an open set G such that $x \in G \subseteq N$. But G is the union of members of G. Hence there exists G such that G is a base for G.

Theorem: Let τ and τ' be topologies for X which have a common base β . Then $\tau = \tau'$.

Proof: Let $G \in \tau$ and $x \in G$. Since G is τ -open, it is a τ -nhd of x and since β is a base for τ , there exists $B \in \beta$ such that $x \in B \subseteq G$. Since β is a base for τ' and $B \in \beta$, it follows that $B \in \tau'$. Hence G is τ' -nhd of x. Since x is arbitrary, $G \in \tau'$.

Thus $\tau \subseteq \tau'$. By symmetry $\tau' \subseteq \tau$. Hence $\tau = \tau'$.

Properties of a base for a topology

Theorem: Let (X, τ) be a topological space and let β be a base for τ . Then β has the following properties:

- (1) For every $x \in X$, there exists a $B \in \beta$ such that $x \in B$, that is, $X = \bigcup \{B : B \in \beta\}$.
- (2) For every $B_1, B_2 \in \beta$ and every point $x \in B_1 \cap B_2$ there exists a $B \in \beta$ such that $x \in B_1 \cap B_2$.

Theorem: Let X be a non-empty set and let β be a collection of subsets of X satisfying the following conditions:

- (1) For every $x \in X$, there exists a $B \in \beta$ such that $x \in B$, that is, $X = \bigcup \{B : B \in \beta\}$.
- (2) For every $B_1, B_2 \in \beta$ and every point $x \in B_1 \cap B_2$ there exists a $B \in \beta$ such that $x \in B \subseteq B_1 \cap B_2$.

Then there exists a unique topology τ for X such that β is a base for τ .

Definition: Let (X, τ) be a topological space. A collection β_* of subsets of X is called a subbase for the topology τ iff $\beta_* \subseteq \tau$ and finite intersections of members of β_* form a base for τ .

Example: Let $X = \{a, b, c, d\}$ and let $\tau = \{\phi, \{a\}, \{a, c\}, \{a, d\}, \{a, c, d\}, X\}$.

Then $\beta_* = \{\{a, c\}, \{a, d\}, X\}$ is a sub-base for τ . Since the family β of finite intersections of members of β_* is given by $\beta = \{\{a\}, \{a, c\}, \{a, d\}, X\}$ which is a base for τ .

Derived sets

Definition: Let (X, τ) be a topological space and let A be a subset of X. A point $x \in X$ is called a limit point (or a cluster point) of A iff every neighbourhood of x contains a point of A

other than x. The set of all limit points of A is called the derived set of A and denoted by $D_X(A)$ or D(A). i.e $(N - \{x\}) \cap A \neq \phi$, for every τ -nhd N of x.

Example: Let $X = \{1,2,3\}$ and let $\tau = \{\phi, \{1\}, \{2,3\}, X\}$. Find all the limit points of the set $A = \{1,2\}.$

Solution: $N(1) = \{\{1\}, \{1,2\}, \{1,3\}, X\}.$

$$({1} - {1}) \cap {1,2} = \phi \cap {1,2} = \phi.$$

 \therefore 1 is not limit point of A.

$$N(2) = \{\{2,3\}, X\}.$$

$$({2,3} - {2}) \cap {1,2} = {3} \cap {1,2} = \phi.$$

 \therefore 2 is not limit point of A.

$$N(3) = \{\{2,3\}, X\}.$$

$$({2,3} - {3}) \cap {1,2} = {2} \cap {1,2} = {2} \neq \phi.$$

 \therefore 3 is limit point of A.

Hence $D(A) = \{3\}.$

tem Imran **Example:** Let $X = \{a, b, c\}$ and let $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. Find all the limit points of the sets (i) $A = \{b, c\}$ (ii) $B = \{a, c\}$.

Solution: $N(a) = \{\{a\}, \{a, b\}, \{a, c\}, X\}, N(b) = \{\{a, b\}, X\} \text{ and } N(c) = \{\{a, c\}, X\}.$

(i)
$$A = \{b, c\}$$

$$({a} - {a}) \cap {b, c} = \phi \cap {b, c} = \phi.$$

 \therefore a is not limit point of A.

$$({a,b} - {b}) \cap {b,c} = {a} \cap {b,c} = \phi.$$

 \therefore b is not limit point of A.

$$(\{a,c\} - \{c\}) \cap \{b,c\} = \{a\} \cap \{b,c\} = \phi.$$

 \therefore c is not limit point of A.

Hence $D(A) = \phi$.

(ii)
$$B = \{a, c\}.$$

$$({a} - {a}) \cap {a, c} = \phi \cap {a, c} = \phi.$$

 \therefore a is not limit point of B.

$$(\{a,b\}-\{b\})\cap\{a,c\}=\{a\}\cap\{a,c\}=\{a\}\neq\phi.$$

 \therefore b is limit point of B.

$$(\{a,c\}-\{c\})\cap\{a,c\}=\{a\}\cap\{a,c\}=\{a\}\neq\phi.$$

 \therefore c is limit point of B.

n Imran

Hence $D(B) = \{b, c\}.$

Definition: Let A be a subset of a topological space (X, τ) and let $x \in X$. Then x is called an adherent point of A iff every nhd of x contains a point of A. The set of all adherent points of A is called the adherence of A and denoted by Adh(A). i.e $N \cap A \neq \phi$, for every nhd N of x.

Example: Let $X = \{1,2,3\}$ and let $\tau = \{\phi, \{1\}, \{2,3\}, X\}$. Find all the adherent points of the set $A = \{1,2\}$.

Solution: $N(1) = \{\{1\}, \{1,2\}, \{1,3\}, X\}, N(2) = \{\{2,3\}, X\} \text{ and } N(3) = \{\{2,3\}, X\}.$

$$\{1\} \cap \{1,2\} = \{1\} \neq \phi, \, \{1,2\} \cap \{1,2\} = \{1,2\} \neq \phi, \, \{1,3\} \cap \{1,2\} = \{1\} \neq \phi \text{ and }$$

$$X \cap \{1,2\} = \{1,2\} \neq \phi.$$

 \therefore 1 is adherent point of *A*.

$$\{2,3\} \cap \{1,2\} = \{2\} \neq \phi \text{ and } X \cap \{1,2\} = \{1,2\} \neq \phi.$$

 \therefore 2 is adherent point of *A*.

$$\{2,3\} \cap \{1,2\} = \{2\} \neq \phi \text{ and } X \cap \{1,2\} = \{1,2\} \neq \phi.$$

 \therefore 3 is adherent point of A.

The adherent points of A are 1,2,3. Hence $Adh(A) = \{1,2,3\}$.

Proof: Let A be a closed. Then A^c is open and to each $x \in A^c$ there exists a nhd N_x of x such that $N_x \subseteq A^c$. Since $A \cap A^c = \phi$, the nhd N_x contains no point of A and so x is not a limit point of A. Thus no point of A^c can be a limit point of A, that is, A contains all its limit points. Hence $D(A) \subseteq A$.

Conversely, let $D(A) \subseteq A$ and let $x \in A^c$. Then $x \notin A$. Since $D(A) \subseteq A$, $x \notin D(A)$. Hence there exists a nhd N_x of x such that $N_x \cap A = \phi$ so that $N_x \subseteq A^c$. Thus A^c contains a nhd of each of its points and so A^c is open, that is, A is closed.

Properties of derived sets

Theorem: Let A, B be subsets of a topological space (X, τ) . Then:

- (i) $D(\phi) = \phi$.
- (ii) $A \subseteq B \Longrightarrow D(A) \subseteq D(B)$.
- (iii) $D(A \cap B) \subseteq D(A) \cap D(B)$.
- (iv) $D(A \cup B) = D(A) \cup D(B)$.

Proof: (i) Since ϕ is closed, $D(\phi) \subseteq \phi$. But ϕ is a subset of every set and so $\phi \subseteq D(\phi)$. Hence $D(\phi) = \phi$.

- (ii) Let $p \in D(A)$ so that p is a limit point of A. Then every nhd of p contains a point of A different from p. Since $A \subseteq B$, every nhd of p must also contain a point of B different from p. Hence p is also a limit point of B, that is, $p \in D(B)$. Hence $D(A) \subseteq D(B)$.
- (iii) Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, by (ii) we have $D(A \cap B) \subseteq D(A)$ and $D(A \cap B) \subseteq D(B)$. Hence $D(A \cap B) \subseteq D(A) \cap D(B)$.
- (iv) Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, it follows from (ii) that $D(A) \subseteq D(A \cup B)$ and $D(B) \subseteq D(A \cup B)$ and hence $D(A) \cup D(B) \subseteq D(A \cup B)$.

Conversely, let $x \notin D(A) \cup D(B) \Rightarrow x \notin D(A \cup B)$.

If $x \notin D(A) \cup D(B)$, then $x \notin D(A)$ and $x \notin D(B)$, that is, x is neither a limit point of A nor a limit point of B. Hence there exist nhds N_1 and N_2 of x such that $(N_1 - \{x\}) \cap A = \phi$ and $(N_2 - \{x\}) \cap B = \phi$(1)

Now $N = N_1 \cap N_2$ is a nhd of x which by (1) contains no point of $A \cup B$ except x. It follows that $x \notin D(A \cup B)$ as required. Hence $D(A \cup B) \subseteq D(A) \cup D(B)$.

Thus $D(A \cup B) = D(A) \cup D(B)$.

Closure

Definition: Let (X, τ) be a topological space and let A be a subset of X. Then the intersection of all τ -closed containing the set A is called the closure of A and denoted by \bar{A} or c(A) or cl(A). i.e $cl(A) = \bigcap \{F: F \text{ is closed}, A \subseteq F\}$.

Example: Let $X = \{a, b, c, d\}$ and let $\tau = \{\phi, \{a\}, \{a, c\}, \{a, d\}, \{a, c, d\}, X\}$. Find the closure of the sets (i) $\{b, c\}$ (ii) $\{b\}$ (iii) $\{b, c, d\}$.

Solution: The closed subsets of *X* are *X*, $\{b, c, d\}$, $\{b, d\}$, $\{b, c\}$, $\{b\}$ and ϕ .

 $cl(A) = \bigcap \{F: F \text{ is closed}, A \subseteq F\}.$

- (i) $cl(\{b,c\}) = X \cap \{b,c,d\} \cap \{b,c\} = \{b,c\}.$
- (ii) $cl(\{b\}) = X \cap \{b, c, d\} \cap \{b, d\} \cap \{b, c\} \cap \{b\} = \{b\}.$
- (iii) $cl(\{b,c,d\}) = X \cap \{b,c,d\} = \{b,c,d\}.$

Theorem: Let *A* be a subset of a topological space (X, τ) . Then:

- (i) cl(A) is the smallest closed set containing A.
- (ii) A is closed iff cl(A) = A.

Proof: (i) This follows from definition.

(ii) If A is closed, then A itself is the smallest closed set containing A and hence cl(A) = A. Conversely, let cl(A) = A. By (i), cl(A) is closed and so A is also closed.

Theorem: $cl(A) = A \cup D(A)$.

Lect. Qays Hatem Imran

Proof: H.W.

Corollary: $cl(A) = Adh(A) = \{x : \text{ each nhd of } x \text{ intersects } A\}.$

Proof: $x \in Adh(A) \Leftrightarrow$ every nhd of x intersects A

 $\Leftrightarrow x \in A$ or every nhd of x contains a point of A other than x.

 $\Leftrightarrow x \in A \text{ or } x \in D(A)$

 $\Leftrightarrow x \in A \cup D(A)$

 $\Leftrightarrow x \in cl(A)$.

Example: Consider the co-finite topological space (X, τ) and find the closure of any subset A of X.

Solution: Here τ consists of the empty set ϕ and all those subsets of X whose complements are finite so that the closed subsets of X are all the finite subsets of X together with X. Hence if $A \subseteq X$ is finite, its closure cl(A) is A itself since A is closed and if A is infinite then the only closed super set of A is X and so cl(A) = X. Thus cl(A) = A if A is finite and cl(A) = X if A is infinite.

Properties of closure

Theorem: Let (X, τ) be a topological space and let A, B be any subsets of X. Then:

- (i) $cl(\phi) = \phi$, cl(X) = X.
- (ii) $A \subseteq cl(A)$.
- (iii) $A \subseteq B \Longrightarrow cl(A) \subseteq cl(B)$.
- (iv) $cl(A \cup B) = cl(A) \cup cl(B)$.
- (v) $cl(A \cap B) \subseteq cl(A) \cap cl(B)$.
- (vi) cl(cl(A)) = cl(A).

Proof: (i) Since ϕ is closed, we have $cl(\phi) = \phi$.

Since *X* is closed, we have cl(X) = X.

- (ii) By theorem (i), cl(A) is the smallest closed set containing A and so $A \subseteq cl(A)$.
- (iii) By part (ii), $B \subseteq cl(B)$. Since $A \subseteq B$, we have $A \subseteq cl(B)$. But cl(B) is a closed set.

Thus cl(B) is a closed set containing A. Since cl(A) is the smallest closed set containing A,

we have $cl(A) \subseteq cl(B)$. Hence $A \subseteq B \Longrightarrow cl(A) \subseteq cl(B)$.

(iv) Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, we have $cl(A) \subseteq cl(A \cup B)$ and $cl(B) \subseteq cl(A \cup B)$ by part (iii). Hence $cl(A) \cup cl(B) \subseteq cl(A \cup B)$(1)

Since cl(A) and cl(B) are closed sets, $cl(A) \cup cl(B)$ is also closed. Also $A \subseteq cl(A)$ and $B \subseteq cl(A)$ cl(B) implies that $A \cup B \subseteq cl(A) \cup cl(B)$. Thus $cl(A) \cup cl(B)$ is a closed set containing $A \cup B$.

Since $cl(A \cup B)$ is the smallest closed set containing $A \cup B$, we have

$$cl(A \cup B) \subseteq cl(A) \cup cl(B) \dots (2)$$

From (1) and (2), we have $cl(A \cup B) = cl(A) \cup cl(B)$.

- (v) Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, by part (iii) we have $cl(A \cap B) \subseteq cl(A)$ and $cl(A \cap B) \subseteq cl(B)$. Hence $cl(A \cap B) \subseteq cl(A) \cap cl(B)$.
- (vi) Since cl(A) is a closed set, we have cl(cl(A)) = cl(A) by theorem (ii) [A is closed iff cl(A) = A].

Theorem: Let (X,τ) be a topological space and let A be subset of X. Then the following s Hatem Imrai statements are equivalent:

- (i) A is closed.
- (ii) cl(A) = A.
- (iii) A contains all its limit points.

Proof: (i) \Rightarrow (ii) : A is closed \Rightarrow cl(A) = A. By theorem part (ii) [A is closed iff cl(A) = A]

(ii)
$$\Rightarrow$$
 (iii) : $cl(A) = A \Rightarrow A \cup D(A) = A$. By theorem $[cl(A) = A \cup D(A)]$

 \Rightarrow $D(A) \subseteq A \Rightarrow A$ contains all its limit points.

(iii) \Rightarrow (i): A contains all its limit points \Rightarrow $D(A) \subseteq A$

 $\Rightarrow A \cup D(A) = A$

 $\implies cl(A) = A$

 \Rightarrow A is closed. By theorem part (ii)

Interior of a set

Definition: Let (X, τ) be a topological space and let A be a subset of X. A point $x \in X$ is said to be an interior point of A iff A is a neighbourhood of x, that is, iff there exists an open set Gsuch that $x \in G \subseteq A$. The set all interior points of A is called the interior of A and is denoted by A° or A^{i} or i(A) or int(A).

Example: Let $X = \{a, b, c, d\}$ and let $\tau = \{\phi, \{a\}, \{a, c\}, \{a, d\}, \{a, c, d\}, X\}$. Find the interior points of the sets (i) $A = \{b, c\}$ (ii) $B = \{a, d\}$

Solution: (i) $a \in \{a\} \nsubseteq \{b,c\}, a \in \{a,c\} \nsubseteq \{b,c\}, a \in \{a,d\} \nsubseteq \{b,c\}, a \in \{a,c,d\} \nsubseteq \{b,c\}$ and $a \in X \not\subseteq \{b, c\}$.

 \therefore a is not interior point of A.

$$b \in X \nsubseteq \{b,c\}$$

 \therefore b is not interior point of A.

$$c \in \{a, c\} \nsubseteq \{b, c\}, c \in \{a, c, d\} \nsubseteq \{b, c\} \text{ and } c \in X \nsubseteq \{b, c\}.$$

 \therefore c is not interior point of A.

$$d \in \{a, d\} \not\subseteq \{b, c\}, d \in \{a, c, d\} \not\subseteq \{b, c\} \text{ and } d \in X \not\subseteq \{b, c\}.$$

 \therefore d is not interior point of A.

$$int(A) = \phi$$
.

(ii)
$$a \in \{a\} \subseteq \{a, d\}$$

 \therefore a is interior point of B.

$$b \in X \nsubseteq \{a, d\}$$

 \therefore b is not interior point of B.

∴ b is not interior point of B.

$$c \in \{a, c\} \nsubseteq \{a, d\}, c \in \{a, c, d\} \nsubseteq \{a, d\} \text{ and } c \in X \nsubseteq \{a, d\}.$$

∴ c is not interior point of B.

 $d \in \{a, d\} \subseteq \{a, d\}.$

∴ d is interior point of B.

 $int(B) = \{a, d\}.$

 \therefore c is not interior point of B.

$$d \in \{a, d\} \subseteq \{a, d\}$$

 \therefore d is interior point of B.

$$int(B) = \{a, d\}.$$

Theorem: $int(A) = \bigcup \{G: G \text{ is open }, G \subseteq A\}.$

Proof: $x \in int(A) \iff A \text{ is a nhd of } x$

 \Leftrightarrow there exists an open set G such that $x \in G \subseteq A$

$$\Leftrightarrow x \in \bigcup \{G: G \text{ is open }, G \subseteq A\}.$$

Hence, $int(A) = \bigcup \{G : G \text{ is open }, G \subseteq A\}.$

Theorem: Let (X, τ) be a topological space and let A be a subset of X. Then:

- (i) int(A) is an open set.
- (ii) int(A) is the largest open set contained in A.
- (iii) A is an open set iff int(A) = A.

Proof: (i) Let $x \in int(A)$. Then x is an interior point of A. Hence by definition, A is a nhd of x. Then there exists an open set G such that $x \in G \subseteq A$. Since G is open, it is a nhd of each of its points and so A is also a nhd of each point of G. It follows that every point of G is an interior point of A so that $G \subseteq int(A)$. Thus it is shown that to each $x \in int(A)$, there exists an open set G such that $x \in G \subseteq int(A)$. Hence int(A) is a nhd of each of its points and consequently int(A) is open set.

- (ii) Let G be any open subset of A and let $x \in G$ so that $x \in G \subseteq A$. Since G is open, A is a nhd of x and consequently x is an interior point of A. Hence $x \in int(A)$. Thus we have shown that $x \in G \implies x \in int(A)$ and so $G \subseteq int(A) \subseteq A$. Hence int(A) contains every open subset of A and it is therefore the largest open subset of A.
- (iii) Let int(A) = A. By part (i) int(A) is an open set and therefore A is also open.

Conversely, let A be open set. Then A is surely identical with the largest open subset of A.

But by part (ii), int(A) is the largest open subset of A. Hence int(A) = A.

Properties of interior

Theorem: Let (X, τ) be a topological space and let A, B be any subsets of X. Then:

- (i) $int(\phi) = \phi$, int(X) = X.
- (ii) $int(A) \subseteq A$.
- (iii) $A \subseteq B \Longrightarrow int(A) \subseteq int(B)$.
- (iv) $int(A \cap B) = int(A) \cap int(B)$.
- (v) $int(A) \cup int(B) \subseteq int(A \cup B)$.
- (vi) int(int(A)) = int(A).

atem Imran

(ii) $x \in int(A) \Rightarrow x$ is an interior point of A $\Rightarrow A$ is a nhd of $x \Rightarrow x \in A$.

Hence $int(A) \subseteq A$.

- (iii) Let $x \in int(A)$. Then x is an interior point of A and so A is a nhd of x. Since $A \subseteq B$, B is also a nhd of x. This implies that $x \in int(B)$. Hence $int(A) \subseteq int(B)$.
- (iv) Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, by part (iii) we have $int(A \cap B) \subseteq int(A)$ and $int(A \cap B) \subseteq int(B)$. Hence $int(A \cap B) \subseteq int(A) \cap int(B)$(1)

Let $x \in int(A) \cap int(B)$. Then $x \in int(A)$ and $x \in int(B)$. Hence x is an interior point of each of the sets A and B. It follows that A and B are nhds of x so that $A \cap B$ is also a nhd of x.

Hence $x \in int(A \cap B)$. Hence $int(A) \cap int(B) \subseteq int(A \cap B)$(2)

From (1) and (2), we get $int(A \cap B) = int(A) \cap int(B)$.

- (v) Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, we have $int(A) \subseteq int(A \cup B)$ and $int(B) \subseteq int(A \cup B)$ by part (iii). Hence $int(A) \cup int(B) \subseteq int(A \cup B)$.
- (vi) By (i) of theorem, int(A) is an open set. Hence by part (iii) of the same theorem int(int(A)) = int(A).

Exterior of a set

Definition: Let (X, τ) be a topological space and let A be a subset of X. A point $x \in X$ is said to be an exterior point of A iff it is an interior point of the complement of A, that is, iff there exists an open set G such that $x \in G \subseteq A^c$ or equivalently $x \in G$ and $G \cap A = \phi$. The set all exterior points of A is called the exterior of A and is denoted by A^e or e(A) or ext(A).

i.e
$$ext(A) = int(A^c)$$
.

Example: Let $X = \{a, b, c, d\}$ and let $\tau = \{\phi, \{a\}, \{a, c\}, \{a, d\}, \{a, c, d\}, X\}$. Find the exterior points of the set $A = \{b, c\}$.

s Hatem Imran

Solution: $a \in \{a\}, \{a\} \cap \{b, c\} = \phi$.

 \therefore a is exterior point of A.

$$b \in X, X \cap \{b,c\} = \{b,c\} \neq \phi.$$

 \therefore b is not exterior point of A.

$$c \in \{a, c\}, \{a, c\} \cap \{b, c\} = \{c\} \neq \phi.$$

 \therefore c is not exterior point of A.

$$d \in \{a, d\}, \{a, d\} \cap \{b, c\} = \phi.$$

d is exterior point of A.

$$ext(A) = \{a, d\}.$$

Remark: (i) $A \cap ext(A) = \phi$.

(ii) ext(A) is open set and is the largest open set contained in A^c .

Theorem: Let (X, τ) be a topological space and $A \subseteq X$. Then $ext(A) = \bigcup \{G \in \tau : G \subseteq A^c\}$.

Proof: By definition, $ext(A) = int(A^c)$ and since $int(A^c) = \bigcup \{G \in \tau : G \subseteq A^c\}$.

Hence $ext(A) = \bigcup \{G \in \tau : G \subseteq A^c\}.$

Remark: (i) $int(A) = ext(A^c) = (cl(A^c))^c$.

(ii) $ext(A) = (cl(A))^c$.

Properties of exterior

Theorem: Let (X, τ) be a topological space and let A, B be any subsets of X. Then:

(i)
$$ext(X) = \phi$$
, $ext(\phi) = X$.

(ii)
$$ext(A) \subseteq A^c$$
.

(iii)
$$ext(A) = ext((ext(A))^c)$$
.

(iv)
$$A \subseteq B \Longrightarrow ext(B) \subseteq ext(A)$$
.

(v)
$$int(A) \subseteq ext(ext(A))$$
.

(vi)
$$ext(A \cup B) = ext(A) \cap ext(B)$$
.

Proof: (i)
$$ext(X) = int(X^c) = int(\phi) = \phi$$
.

$$ext(\phi) = int(\phi^c) = int(X) = X.$$

(ii)
$$ext(A) = int(A^c) \subseteq A^c$$
 by part (ii) of theorem $[int(A) \subseteq A]$.

(iii)
$$ext((ext(A))^c) = ext((int(A^c))^c)$$

$$= int(((int(A^c))^c)^c)$$

$$= int(int(A^c)) \quad [since (A^c)^c = A, int(int(A)) = int(A)]$$

$$= int(A^c)$$

$$= ext(A).$$

(iv)
$$A \subseteq B \Rightarrow B^c \subseteq A^c \Rightarrow int(B^c) \subseteq int(A^c)$$

 $\Rightarrow ext(B) \subseteq ext(A).$

(v) By part (ii), we have $ext(A) \subseteq A^c$. Then part (iv) gives $ext(A^c) \subseteq ext(ext(A))$.

But $int(A) = ext(A^c)$. Hence $int(A) \subseteq ext(ext(A))$.

(vi)
$$ext(A \cup B) = int((A \cup B)^c)$$

=
$$int(A^c \cap B^c)$$
 [By De-Morgan Law]
= $int(A^c) \cap int(B^c)$ By part (iv) of theorem [$int(A \cap B) = int(A) \cap int(B)$]
= $ext(A) \cap ext(B)$.

Frontier of a set

Definition: Let (X, τ) be a topological space and let A be a subset of X. A point $x \in X$ is said to be a frontier point (or boundary point) of A iff it is neither interior nor exterior point of A. The set all frontier points of A is called the frontier of A and is denoted by $Fr_X(A)$ or Fr(A). i.e $Fr(A) = cl(A) \cap (int(A))^c$.

Example: Let $X = \{a, b, c, d\}$ and let $\tau = \{\phi, \{a\}, \{a, c\}, \{a, d\}, \{a, c, d\}, X\}$. Find the frontier points of the set $A = \{b, c\}$.

Solution:
$$cl(A) = cl(\{b,c\}) = \{b,c\}, int(A) = int(\{b,c\}) = \phi.$$

$$(int(A))^c = \phi^c = X.$$

$$Fr(A) = cl(A) \cap (int(A))^{c}$$
$$= \{b, c\} \cap X = \{b, c\}.$$

Hence
$$Fr(A) = \{b, c\}.$$

Theorem: Let (X, τ) be a topological space and let A be a subset of X. Then int(A), ext(A) and Fr(A) are disjoint.

Proof: By definition $ext(A) = int(A^c)$. Also $int(A) \subseteq A$ and $int(A^c) \subseteq A^c$.

Since $A \cap A^c = \phi$, it follows that $int(A) \cap ext(A) = int(A) \cap int(A^c) = \phi$.

A gain by the definition of frontier, we have

$$x \in Fr(A) \iff x \notin int(A) \text{ and } x \notin ext(A)$$

 $\iff x \notin int(A) \cup ext(A)$
 $\iff x \in [int(A) \cup ext(A)]^c.$

Thus $Fr(A) = [int(A) \cup ext(A)]^c$.

It follows that $Fr(A) \cap int(A) = \phi$ and $Fr(A) \cap ext(A) = \phi$.

Hence $X = int(A) \cup ext(A) \cup Fr(A)$.

Example: Let $X = \{a, b, c, d, e\}$ and let $\tau = \{\phi, \{b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\}, X\}$.

Find (1) interior (2) exterior (3) frontier of the following subsets of *X*:

(i)
$$A = \{c\}$$
 (ii) $B = \{a, b\}$ (iii) $C = \{a, c, d\}$ (iv) $D = \{b, c, d\}$.

Solution: H.W.

Definition: Let (X, τ) be a topological space and let A, B be subsets of X. Then:

- (i) A is said to be dense in B iff $B \subseteq cl(A)$.
- (ii) A is said to be dense in X or every where dense iff cl(A) = X.

It follows that A is everywhere dense iff every point of X is an adherent point of A.

- (iii) A is said to be no where dense or non dense in X iff $int(cl(A)) = \phi$.
- (iv) A is said to be dense in itself iff $A \subseteq D(A)$.

Definition: A subset A of a topological space (X, τ) is perfect iff A is dense in itself and closed, that is, iff A = D(A).

Definition: A topological space X is said to be separable iff X contains a countable dense subset, that is, iff there exists a countable subset A of X such that cl(A) = X.

Example: The usual topological space (\mathbb{R}, \mathbb{U}) is separable.

Solution: Since the set \mathbb{Q} of rational numbers is a countable dense subset of \mathbb{R} .

 $\mathbb{Q} \in \mathbb{R}$ which is countable and $cl(\mathbb{Q}) = \mathbb{R}$.

Definition: Let (X, τ) be a topological space and let Y be a subset of X we may construct a topology τ_Y for Y which is called the relative topology or the relativization of τ to Y.

Definition: Let (X, τ) be a topological space and let Y be a subset of X the τ -relative topology for Y is the collection τ_Y given by $\tau_Y = \{G \cap Y : G \in \tau\}$.

Remark: The topological space (Y, τ_Y) is called a subspace of (X, τ) the topology τ_Y on Y is called induced by τ .

Example: Consider the topology $\tau = \{\phi, \{1\}, \{3,4\}, \{1,3,4\}, X\}$ on $X = \{1,2,3,4\}$ and the subset $Y = \{1,2,3\}$ of X.

Solution: Let $Y = \{1,2,3\} \subseteq X$. We then have

$$\phi \cap \{1,2,3\} = \phi$$
, $\{1\} \cap \{1,2,3\} = \{1\}$, $\{3,4\} \cap \{1,2,3\} = \{3\}$, $\{1,3,4\} \cap \{1,2,3\} = \{1,3\}$ and $X \cap \{1,2,3\} = \{1,2,3\} = Y$.

Hence the relativization of τ to Y is $\tau_Y = {\phi, \{1\}, \{3\}, \{1,3\}, Y}$.

Theorem: Let (X, τ) be a topological space and let Y be a subset of X. Then the collection $\tau_Y = \{G \cap Y : G \in \tau\}$ is a topology on Y.

Proof: H.W.

Definition: A property of a topological space is said to be hereditary if every subspace of the space has that property.

Theorem: Let (Y, \mathcal{V}) be a subspace of a topological space (X, τ) and let (Z, \mathcal{W}) be a subspace of (Y, \mathcal{V}) . Then (Z, \mathcal{W}) is a subspace of (X, τ) .

Theorem: Let (Y, τ_Y) be a subspace of a topological space (X, τ) . Then:

- (i) a subset A of Y is closed in Y iff there exists a closed set F in X such that $A = F \cap Y$.
- (ii) for every $A \subseteq Y$, $cl_Y(A) = cl_X(A) \cap Y$.
- (iii) a subset M of Y is a τ_Y -nhd of a point $y \in Y$ iff $M = N \cap Y$ for some τ -nhd N of y.
- (iv) a point $y \in Y$ is a τ_Y -limit point of $A \subseteq Y$ iff y is a τ -limit point of A, $D_Y(A) = D(A) \cap Y$.
- (v) for every $A \subseteq Y$, $int_Y(A) \supseteq int_X(A)$.
- (vi) for every $A \subseteq Y$, $Fr_Y(A) \subseteq Fr_X(A)$.

Proof: (i) A is closed in $Y \Leftrightarrow Y - A$ is open in Y

$$\Leftrightarrow Y - A = G \cap Y$$
 for some open subset G of X

$$\Leftrightarrow A = Y - (G \cap Y) = (Y - G) \cup (Y - Y)$$
 [De-Morgan Law]

$$\Leftrightarrow A = Y - G \text{ [since } Y - Y = \phi]$$

$$\Leftrightarrow A = Y \cap G^c$$

$$\Leftrightarrow A = Y \cap F$$
 where $F = G^c$ is closed in X, since G is open in X.

(ii) By definition,
$$cl_Y(A) = \bigcap \{K: K \text{ is closed in } Y \text{ and } A \subseteq K\}$$

$$= \bigcap \{F \cap Y: F \text{ is closed in } X \text{ and } A \subseteq F \cap Y\} \text{ by (i)}$$

$$= [\bigcap \{F: F \text{ is closed in } X \text{ and } A \subseteq F\}] \cap Y$$

$$= cl_X(A) \cap Y.$$

(iii) H.W.

(iv)
$$y$$
 is a τ_Y -limit point of $A \Leftrightarrow (M - \{y\}) \cap A \neq \phi$, $\forall \tau_Y$ -nhd M of y $\Leftrightarrow ((N \cap Y) - \{y\}) \cap A \neq \phi$, $\forall \tau$ -nhd N of y by (iii) $\Leftrightarrow (N - \{y\}) \cap A \neq \phi$, $\forall \tau$ -nhd N of y $\Leftrightarrow y$ is a τ -limit point of A .

(v) $x \in int_X(A) \implies x$ is a τ -interior point of A

 \Rightarrow A is a τ -nhd of x

 \Rightarrow $A \cap Y$ is a τ_Y -nhd of x by (iii)

 \Rightarrow A is a τ_Y -nhd of x [since $A \subseteq Y \Rightarrow A \cap Y = A$]

 $\Rightarrow x \in int_Y(A)$.

(vi) H.W.

Example: Give an example to show that in general $int_X(A) \neq int_Y(A)$.

Solution: Let $X = \{a, b, c, d, e\}$ and let $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c, d\}, \{a, b, e\}, \{a, b, c, d\}, X\}$ be a topological space. Let $Y = \{a, c, e\}$. Then $\tau_Y = \{A \cap Y : A \in \tau\}$ so that the members of τ_Y are: $\phi \cap Y = \phi$, $\{a\} \cap Y = \{a\}$, $\{a, b\} \cap Y = \{a\}$, $\{a, c, d\} \cap Y = \{a, c\}$, $\{a, b, e\} \cap Y = \{a, e\}$, $\{a, b, c, d\} \cap Y = \{a, c\}$ and $X \cap Y = Y$. Thus $\tau_Y = \{\phi, \{a\}, \{a, c\}, \{a, e\}, Y\}$.

Now consider the subset $A = \{a, e\}$ of Y. Then $int_X(A) = \{a\}$ and $int_Y(A) = \{a, e\}$.

Theorem: Let Y be a subspace of a topological space X. If $A \subseteq Y$ is open (closed) in X, then A is also open (closed) in Y.

Proof: H.W.

Theorem: Let (Y, τ_Y) be a subspace of a topological space (X, τ) and let β be a base for τ . Then $\beta_Y = \{B \cap Y : B \in \beta\}$ is a base for τ_Y .

Proof: Let H be a τ_Y -open subset of Y and let $x \in H$. Then there exists a τ -open subset G of X such that $H = G \cap Y$. Since β is a base for τ , there exists a set $B \in \beta$ such that $x \in B \subseteq G$. Since $H \subseteq Y$, it follows that $x \in Y$ and consequently $x \in B \cap Y \subseteq G \cap Y = H$. Thus to each $x \in H$, there exists a member $B \cap Y$ of β_Y such that $x \in B \cap Y \subseteq H$, that is, $H = \bigcup \{B \cap Y : B \cap Y \in \beta_Y \text{ and } B \cap Y \subseteq H\}$. Hence β_Y is a base for τ_Y .