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Chapter One

Topological Spaces

Definition: Let X be a non-empty set and let t be a collection of subsets of X satisfying the
following three conditions:

per,Xer.

(i) If G; € Tand G, € 1, then G;NG, € 7.

(iii) If G, € 7 for every A € A where A is an arbitrary set, then U{G;: 1 € A} € .

Then t is called a topology for X, the members of = are called t-open (or simply open) sets
and the pair (X, 1) is called a topological space. The elements of X will be called points of the

space.

Remark: The union of empty collection of sets is empty. i.e U{A4;:1 € ¢} = ¢ and the
intersection of empty collection of subsets of X is X itself. i.e N{A;: 1 € ¢} = X.

Remark: The three conditions (i), (ii) and (iii) are equivalent to the following two conditions:
(1) The intersection of an arbitrary finite number of open sets is open.
(2) The union of arbitrary collection of open sets is open.

Example: Let X = {a, b, c} and consider the following collections of the subsets of X:
7, = {$, X},

7, = {¢,{a}, {b, c}, X},

73 = {¢,{a}, {b}, X},

74 = {¢,{a}, X},

5 = {¢,{a}, {b}, {a, b}, X},

76 = {¢,{a, b}, X},

77 = {¢,{b},{a, b}, X},

15 = {{a}, {b, c}, X},

79 = {¢,{a}, {b},{a, b}},

710 = {¢,{a, b}, {b,c}, X}.

Then 14, 7,, T4, Ts, T¢ and T, are all topologies for X, since they satisfy all the conditions (i),
(ii) and (iii).

Let us verify these axioms for .

He.XeT,
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(i) pN{b} = pN{a, b} = pNX = ¢ € 75, {b}N{a, b} = {b}NX = {b} € 1,

and {a, b}NX = {a, b} € 1;.

(iii) pU{b} ={b} € 1;, dU{a,b} ={a, b} € 1;,, pUX =X € 7,, {b}U{a, b} = {a,b} € 1,
(b UX =X € 15, {a,b}UX =X € 7, and {b}U{a, b}UX = X € .

T3 IS not a topology for X since {a} € 15 and {b} € 75 but {a}U{b} = {a, b} & 75 and so it
does not satisfy (iii).

Tg IS not a topology for X since ¢ & 75 and so it does not satisfy (i).

T4 IS NOt a topology for X since X & t4 and so it does not satisfy (i).

T10 IS NoOt a topology for X since {a, b} € 74, and {b, c} € 1,4 but {a, b}N{b,c} = {b} & 14,

and so it does not satisfy (ii).

Example: Let X be a non-empty set. Then the collection I = {¢, X} consisting of the empty
set and the whole space is always a topology for X called the indiscrete (or trivial) topology.

The pair (X, 1) is called an indiscrete topological space.

Example: Let X be a non-empty set and let D be the collection of all subsets of X, the D is a
topology for X called the discrete topology. The pair (X, D) is called a discrete topological
space.

Solution: Since ¢ € X, X € X, we have ¢ € D and X € D so that (i) is satisfied, (ii) also
holds since the intersection of two subsets of X a gain a subset of X. Similarly (iii) is satisfied

since the union of any collection of subsets of X is a gain a subset of X.

Example: Let X be a non-empty set and let 7 be the collection of all those subsets of X whose
complements are finite together with the empty set, that is, a subset A of X belongs to t iff A
is empty or A€ is finite. Then t is a topology for X called the co-finite topology or the finite
complement topology.
Solution: (i) Since X¢ = ¢ which is finite, we have X € t. Also ¢ € t be definition.
(i) G,, G, € T = G, G,° are finite
= G,°U G, is finite
= (G1N G,)° is finite [By De-Morgan law]
= G,N G, ET.
(iii) G, € 1, VA € A = G, is afinite, VA € A
= N{G,“: 1 € A} is a finite
= [U{G;: A € A}]¢ is afinite [By De-Morgan law]
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= U{Gp:1 €A} ET.

Hence T is co-finite topology for X.

Example: Let X be a non-empty set and let © be consist of all those subsets of X whose
complements are countable sets together with the empty set. Then 7 is a topology for X called

the co-countable topology.

Example: Let U consist of ¢ and all those subsets G of R having the property that to each x €
G there exists € > 0 such that (x —&,x + €) € G. Then U is a topology for R called the usual
topology.

Solution: (i) ¢ € U by definition. Also R € Usince foreachx e R, (x —1,x + 1) € R.

In factforany e > 0, (x —&g,x + &) S R.

(i) Let G4, G, € U. If G;N G, = ¢, there is nothing to prove.

If GiN G, # ¢, let x € G;N G,. Then x € G; and x € G,. Hence there exist &; > 0 and &, >
0 such that (x —&;,x + &) € G, and (x — &3, x + &) € G,. Take € = min{e;, &, }. Thene >
Oand (x —&,x 4+ €) € G,N G,. Hence G;N G, € U.

(iii) Let {G;: A € A} be an arbitrary collection of members of U and let x € U{G,: 1 € A}.
Then x € G; for some 1 € A. Since G, € U, there exists € > 0 such that (x —&,x + €) € G;.
Butthen (x — &, x + €) € U{G,: A € A}. Therefore U{G;: 1 € A} € U.

Hence U is a topology for R.

Example: Every open interval on R is a U-open set.
Solution: Let (a, b) be any interval on R and let x € (a, b). Take € = min{x —a, b — x}.

Then it is easy to see that (x — &,x + €) S (a, b). Hence (a, b) is a U-open set.

Example: Let 7, and 7, be the collections of subsets of R defined respectively as follows:

(1) ¢ € 74, R € 14 and all open infinite intervals G, = (r, o) with » € R belong to ;.

(2) ¢ € 15, R € 7, and all open infinite intervals G, = (g, ©) with g € Q belong to 7.
Then 7, is a topology for R but 7, is not a topology for R.
Solution: (1) (i) ¢ € 7, and R € 7, by definition.
(ii) Let G, € T7; and G5 € T, with 1, s € R, G-NGs; = G, or G, accordingasr = s or r < s.
Hence G, NG, € 14.
(iii) Let G, € t, for every A € A where A is some set of real numbers. We have to show that
U{G,: 1 € A} € 14.
If A is not bounded below so that inf(A) = —oo, then U{G;: 1 € A} = R € 13.
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If A is bounded below so that inf(A) = 7,(ry € R) exists, then U{Gy: 1 € A} = (15, ) = Gy,
Hence in either case, U{G;: 1 € A} € 1;.

Therefore 7; is a topology for R.

(2) Let G, with g € Q belong to 7, for all g > V2. Then U{G,:q € Q,q > V2} = (v/2, )
which does not belong to 7,, since ¥2 is not a rational number. Hence 7, is not a topology for
R.

Example: Let t be the collection of subsets of N consisting of empty set and all subsets of N

of the form G,, = {m,m + 1,m+ 2,.....}, m € N. Then 7 is a topology for N.

Theorem: Let {t,: 1 € A} where A is an arbitrary set, be a collection of topologies for X.
Then the intersection N{z,: A € A} is also a topology for X.

Proof: Let {t,: A € A} be a collection of topologies on X. We have to show that N{z;: 1 € A}
is also a topology on X.

If A= ¢, then N{z: 1 € ¢} = P(X). Thus in this case the intersection of topologies is the
discrete topology.

Now let A # ¢.

(i) Since 1, Is a topology for every A € A, it follows that ¢, X € 1, for every 1 € A.

But¢ € 7, forevery A e A= ¢ € N{r,: 1 € A}, and

Xer foreveryle A= X € N{r: 1 € A}.

(i) Let G4, G, € N{t : A € A}. Then G4, G, € T, for every 1 € A. Since 7, is a topology for X
for every A € A, it follows that G;N G, € 7, for every 1 € A. Hence G;N G, € N{t;: 1 € A}.
(iii) Let G, € N{zy: A € A} for all « € A where A is an arbitrary set. Then G, € 7;, VA€ A
and Va € A. Since each t; is a topology for X, it follows that U{G,: a € A} € 7;, VA € A.
Hence U{G,: a € A} € N{t;: 1 € A}. Thus N{z,: A € A} is a topology for X.

Remark: The union of topologies is not necessarily a topology on X.

Example: Let X = {a, b, c}. Consider two topologies 7, and t, for X defined as follows:
7, = {¢,{a}, X} and 7, = {¢, {b}, X}. Then 7,Ut, = {¢, {a}, {b}, X} which is not a topology
for X.

Definition: Let 7, and 7, be two topologies for a non-empty set X, we say that t, is coarser
(or weaker or smaller) than t, or that t, is finer (or stronger or larger) than t, iff 7; < 7, that

is iff every t,-open set is 7,-0pen set.
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If either 7; € 7, Or T, < 14, then we say that 7, and 7, are comparable.

If 1, € 7, and , € 74, then we say that 7; and 7, are not comparable

Example: For a non-empty set X, the indiscrete topology I is the coarser topology and the

discrete topology D is the finer topology.

Example: Let X = {a, b, c}. Consider three topologies t,, T, and 73 for X defined as follows:
71 = {¢,{a}, X}, v, = {¢,{b}, X} and 75 = {¢,{a}, {a, b}, {a, c}, X}.

Since 7; £ 1, and 7, € 74, then 7; and 7, are not comparable.

Since 7, € 73 and T3 € T,, then 7, and 75 are not comparable.

Since 7; € 14, then t; and 75 are comparable.

Since 7; € 14, then 7, is coarser than 75 or 7 is finer than ;.

Metric topologies
Theorem: Let (X,d) be any metric space and let t; consist of ¢ and those subsets G of X
having the property that to each x € G there exists » > 0 such that the open ball B(x,r) is
contained in G. Then t4 is a topology for X.
Proof: (i) ¢ € T4 by definition. Also to each x € X, B(x, 1) € X, showing that X € .
(ii) Let G4,G, € T4 and let x € G;NG,. Then x € G; and x € G,. Hence there exist r; > 0
and r, > 0 such that B(x,r;) € G; and B(x,13) € G,.
Let r = min{r;,»}. Then B(x,r) € G,NG, and therefore G, NG, € 74.
(iii) Let Q be an arbitrary collection of members of 7; and let x € UQ. Then x € G for some
G € Q. Since G € 14, there exists r > 0 such that B(x,r) € G. But B(x,r) € UQ and

therefore UQ € 7,4. Hence 7,4 is a topology for X.

Remark: Every open ball in a metric space (X, d) is an open set with respect to the d-metric

topology for X.

Definition: A topological space (X, 7) is said to be metrizable iff there exists a metric d for X

such that t; = t. i.e d-metric topology for X is the same as 7.

Example: Let X = {a, b}, a # b. Define T = {¢, {a}, X}. Then 7 is a topology for X.
The topological space (X, t) is not metrizable.

Solution: Let d be any metric space for X and let d(a, b) = r. Since a # b,r > 0.
Then B(a,r) = {a} € Tand B(b,r) = {b} & 7. Hence (X, 7) is not metrizable.
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Example: Show that the usual metric for R induces usual topology for R.

Example: Show that the discrete metric on a set X induces the discrete topology for X.

Closed sets

Definition: Let (X, ) be a topological space. A subset F of X is said to be z-closed if and

only if its complement F¢ is open.

Remark: Since ¢ is open, it follows that ¢¢ = X is closed. Similarly since X is open, X¢ = ¢

is closed. Thus ¢ and X are open as well as closed in every topological space.

Example: Let X = {a, b,c}and let t = {¢, {a}, {b, c}, X} be a topology for X.
Solution: Since {a}¢ = {b, c}, {b,c}c = {a}, it follows that the closed sets are:

X,{b,c},{a}, ¢.

Example: If a € R, then {a} is a closed set in the usual topology for R.
Solution: {a}¢ = (—,a)U(a, ).
But (—o0,a) and (a, o) are U-open sets. Hence their union is also U-open.

It follows that {a}€ is U-open. Therefore {a} is U-closed.

Example: Let a,b € R where a < b. Then the closed interval [a, b] is closed set the usual

topology for R.

Solution: [a,b]* = {x E R: x < aor x > b}
= (=0, a)U(b, »)

which is U-open, being the union of two U-open sets. Hence [a, b] is U-closed.

Definition: A topological space (X, 1) is said to be a door space iff every subset of X is either

open or closed.

Example: Let X = {a, b,c} and let T = {¢, {b},{a, b}, {b, c}, X}.
Then closed sets are X, {a, c},{c}, {a}, ¢. Hence all the subsets of X are either open or closed

and consequently (X, ) is a door space.

Theorem: If {F;: 1 € A} is any collection of closed subsets of a topological space X, then
N{F;: A € A} is a closed set.
Proof: F; is closed, VA € A = F, is open, VA € A
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= U{F,“: 1 € A} is open [ By part (iii) of the definition of topology]
= [N{F;: A € A}]€ is open [ By De-Morgan law]
= N{F,: A € A} is aclosed [ By definition of closed sets].

Theorem: If F; and F, are two closed subsets of a topological space (X, 7). Then F,UF, is a
closed set.
Proof: F,, F, are closed = F;°, F,“ are open

= F,°NF,° is open [ By part (ii) of the definition of topology]

= [FLUF,]¢ is open [ By De-Morgan law]

= F,UF, is closed.

Remark: Note that if F, F,, ... ... , F, be a finite number of closed subsets of X, then their

union will also be a closed subset of X.

Remark: The union of an infinite collection of closed sets in a topological space is not

necessarily closed.

Example: Let (R, U) be the usual topological space and let F,, = [%, 1], n e Nsothat F, is a

closed interval on R.
Solution: E, is a U-closed set. Now
U{E, : n € N} = {1JU[5, 1]JU[;, 1JU[5, 1] . ... ... = (0,1]
Since (0,1] is not closed, it follows that the union of an infinite collection of closed sets is not

necessarily closed.
Example: Every finite subset of R is a U-closed set.

Theorem: Let X be a non-empty set and F be a family of subsets of X such that
()peFand X € F

(ii) F,,F, e F = F,UF, €F.

(iii) F, e F,vAe A= N{F: 1€ A} €F.

Then there exists a unique topology for X such that the 7-closed subsets of X are precisely the
members of F.

Proof: H.W.
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Neighbourhoods
Definition: Let (X,7) be a topological space and let x € X. A subset N of X is said to be a
T-neighbourhood (briefly t-nhd) of x iff there exists a t-open set G such that x € G € N.
Similarly N is called a T-nhd of A € X iff there exists an open set G suchthat A € G € N.
The collection of all T-neighbourhoods of x € X is called the neighbourhood system at x and
shall be denoted by N (x).

Remark: (i) T-open set is a t-neighbourhood of each of its points.
(i) T-neighbourhood of a point need not be a t-open set.

(iii) every open set containing x is a nhd of x.

Example: Let X = {1,2,3} and let T = {¢, {1}, {2,3}, X} be a topology for X. Find the nhd
system of 1,2,3.

Solution: Then all subsets of X are: ¢, {1}, {2}, {3},{1,2},{1,3},{2,3} and X.

N(1) = {{1},{1,2},{1,3}, X},

N(2) = {{2,3}, X},

N(3) = {{2,3}, X}.

Example: Let X = {1,2,3,4,5} and let = = {¢,{1},{1,2},{1,2,5},{1,3,4},{1,2,3,4}, X} be a
topology for X. Find the nhd system of 1,2,3,4,5.
Solution: H.W.

Theorem: A subset of a topological space is open if and only if it is a neighbourhood of each
of its points.

Proof: Let G be an open subset of a topological space. Then for every x € G such that x €
G < G and therefore G is a nhd of each of its points.

Conversely, let G be a nhd of each of its points. If G = ¢, then it is open.

If G # ¢, then to each x € G there exists an open set G, such that x € G, € G. It follows that

G = U{G, : x € G}. Hence G is open, being a union of open sets.

Properties of neighbourhoods
Theorem: Let X be a topological space, and for each x € X, let N(x) be the collection of all
nhds of x. Then:
(1)vx e X,N(x) # ¢

I.e every point x has at least one neighbourhood.
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(2QQJNeEN(Kx) = x€N

i.e every neighbourhood of x contains x.

(3)NeN(kx),NSM =M € N(x)

I.e every set containing a neighbourhood of x is a neighbourhood of x.

(4)N eN(x),M e N(x) = NNM € N(x)

I.e the intersection of two neighbourhoods of x is a neighbourhood of x.

(5) NeN(x) = 3IM € N(x)suchthat M € Nand M e N(y) Vy E M

i.e if N is a neighbourhood of x, then there exists a neighbourhood M of x which is a subset
of N such that M is a neighbourhood of each of its points.

Proof: (1) Since X is an open set, it is a nhd of every x € X. Hence there exists at least one
nhd (namely X) for each x € X. Hence N(x) # ¢,Vx € X.

(2) If N € N(x), then N is a nhd of x. So by definition of nhd, x € N.

(3) If N € N(x), then there is an open set G suchthatx e G € N.Since NS M, x€EGE M
and so M is a nhd of x. Hence M € N(x).

(4) Let N € N(x) and M € N(x). Then by definition of nhd, there exist open sets G, and G,
suchthatx € Gy € Nand x € G, € M.Hence x € G;NG, S NNM............ (D

Since G; NG, is open set, it follows from (1) that NN M is a nhd of x. Hence NNM € N(x).
(5) If N € N(x), then there exists an open set M such that x € M < N. Since M is open set, it
is a nhd of each of its points. Therefore M € N(y) Vy € M.

Theorem: Let X be a non-empty set and for each x € X, let N(x) be a non-empty collection
of subsets of X satisfying the following conditions:

() NeN(x) =>x€N

(2) Ne N(x),M € N(x) = NNM € N(x).
Let 7 consist of the empty set and all those non-empty subsets G of X having the property that
x € G implies that there exists an N € N(x) such that x € N € G. Then 7 is a topology for X.
Proof: (i) ¢ € 7 by definition. We now show that X € 7.
Let x € X. Since N(x) # ¢, thereisan N € N(x) and so x € N by (1). Since N is a subset of
X,wehavex € N C X. Hence X € 7.
(if) Let G1,G, € 7. If x € G;NG,, then x € G; and x € G,. Since G; € T and G, € T, there
exist N € N(x) and M € N(x) such that x e NS G, and x e M € G,. Then x e NNM <
G,NG,. But NNM € N(x) by (2). Hence G, NG, € .
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(iii) Let G, € T,VA € A. If x € U{G, : 1 € A}, then x € G, for some A, € A. Since G, € T,
there exists an N € N(x) such that x € N € G, _and consequently x € N € U{G; : 1 € A}.

Hence U{G, : 1 € A} € 7. It follows that 7 is a topology for X.

Definition: Let (X, ) be a topological space. A non-empty collection B(x) of 7-nhds of x is
called a base for the t-neighbourhood system of x iff for every t-neighbourhood N of x there
is B € B(x) such that B € N. We then also say that 5(x) is a local base at x or a fundamental
system of neighbourhoods of x.

If B(x) is a local base at x, then the members of §(x) are called basic 7-neighbourhoods of x.

Example: Let X = {a, b,c,d, e} and let T = {¢, {a},{a, b}, {a,c,d},{a,b,c,d},{a, b, e}, X} be
a topology for X.

Then a local base at each of the points a, b, ¢, d, e is given by:
B(a) ={{a}}, Bb)={{ab}}, B(c)={{acd}}
B(d) ={{a,c,d}}, B(e) = {{abe}}

Observe that here a local base at each point consists of a single -nhd of the point.

Note that {{a, b}} does not form a local base at a. (Why ?)

Example: Consider the usual topology U for R and any pointx € R. Then the collection
Bx) ={(x —¢&,x + ¢):0 < € € R} constitutes a base for the U-neighbourhood system of x.
Solution: Let N be any nhd of x. Then there exists a U-open set G such that x € G € N.

Since G is U-open, 3¢ > 0 such that (x —&,x+ &) € G S N. Thus to each nhd N of x, 3 a
member (x — &, x + €) of B(x) such that (x —&,x + €) € N.

Definition: A topological space (X, t) is said to satisfy the first axiom of countability if each
point of X possesses a countable local base. Such a topological space is said to be a first

countable space.
Example: A discrete topological space (X, D) is first countable space.

Example: The usual topological space (R, U) is first countable space.
Solution: Let x € R. Then the collection {(x — %,x +%) :n € N} is a countable base at x

and so (R, U) is first countable.

10
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Properties of local base
Theorem: Let (X, t) be a topological space and let B(x) be a local base at any point x of X.
Then £ (x) has the following properties:
(1) f(x) # ¢ forevery x € X
(2) If B € B(x),thenx € B
(3) If A € B(x) and B € B(x), then there exists a C € B(x) such that C <€ ANB
(4) If A€ B(x), then there exists a set B such that x e BS A and Vy € B, 3C € B(y)
satisfying C € B.

Definition: Let (X, t) be a topological space. A collection 8 of subsets of X is said to form a
base for t if and only if

Hpcr,

(ii) for each point x € X and each nhd N of x there exists some B € 8 such that x € B € N.

Example: Let X = {a, b,c,d} and let T = {¢, {a}, {b}, {a, b}, {c,d},{a,c,d}, {b,c,d}, X} be a
topology for X.

Then the collection g = {{a}, {b}, {c, d}} is a base for t since

(i) € tand

(ii) Each nhd of a contains {a} with a member of g containing a. Similarly each nhd of b

contains {b} € B and each nhd of c or d contains {c,d} € .

Definition: Let (X,t) be a topological space. The space is said to be second countable iff

there exists a countable base for .
Example: The usual topological space (R, U) is second countable space.

Theorem: Let (X, 7) be a topological space. A sub collection g of 7 is a base for t iff every -
open set can be expressed as the union of members of 5.

Proof: Let B be a base for T and let G € t. Since G is t-open, it is a T-nhd of each of its
points. Hence by definition of base, Vx € G, 3B € f such that x € B < G. It follows that G =
U{B:B € Band B < G}.

Conversely, let g < T and let every open set G be the union of members of 5. We have to

show that 8 is a base for 7. We have
(i) B < T (given)

11
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(if) Let x € X and let N be any nhd of x. Then there exists an open set G such that x € G € N.
But G is the union of members of . Hence there exists B € f such that x e BS G S N.

Thus S is a base for 7.
Theorem: Let 7 and 7’ be topologies for X which have a common base 8. Then 7 = 7.

Proof: Let G € T and x € G. Since G is t-open, it is a t-nhd of x and since £ is a base for T,
there exists B € 8 such that x € B € G. Since B is a base for ' and B € B, it follows that
B € t'. Hence G is t'-nhd of x. Since x is arbitrary, G € 7.

Thus t € t’. By symmetry t' € 7. Hence t = 7’.

Properties of a base for a topology
Theorem: Let (X,7) be a topological space and let § be a base for . Then S has the
following properties:
(1) For every x € X, there exists a B € 8 such that x € B, that is, X = U{B: B € [}
(2) For every By, B, € 8 and every point x € B; B, there exists a B € § such that x €
B € B;NB,.

Theorem: Let X be a non-empty set and let § be a collection of subsets of X satisfying the
following conditions:
(1) For every x € X, there exists a B € 8 such that x € B, that is, X = U{B: B € 3}
(2) For every By, B, € B and every point x € BB, there exists a B € 8 such that x €
B € B;NB,.

Then there exists a unique topology 7 for X such that g is a base for .

Definition: Let (X, ) be a topological space. A collection S, of subsets of X is called a sub-

base for the topology 7 iff 5, < t and finite intersections of members of £, form a base for z.

Example: Let X = {a, b,c,d} and let T = {¢,{a}, {a, c},{a,d},{a,c,d}, X}.
Then B, = {{a, c},{a, d}, X} is a sub-base for 7. Since the family g of finite intersections of

members of B, is given by 8 = {{a}, {a, c},{a, d}, X} which is a base for .

Derived sets

Definition: Let (X,t) be a topological space and let A be a subset of X. A point x € X is

called a limit point (or a cluster point) of A iff every neighbourhood of x contains a point of A

12
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other than x. The set of all limit points of A is called the derived set of A and denoted by
Dy (A) or D(A). i.e (N —{x})NA # ¢, for every t-nhd N of x.

Example: Let X = {1,2,3} and let T = {¢, {1}, {2,3}, X}. Find all the limit points of the set
A=1{12}

Solution: N(1) = {{1},{1,2},{1,3}, X}.

({1} = {1hNn{1,2} = ¢pN{1,2} = ¢.

=~ 1 is not limit point of A.

N(2) = {{2,3}, X}.

({2,3} = 2HN{1,2} = {31n{1,2} = ¢.

=~ 2 1s not limit point of A.

N(3) = {{2.,3}, X}.

({2,3} - (3HN{1,2} = {2}n{1,2} = {2} # ¢.
=~ 3 1s limit point of A.

Hence D(A) = {3}.

Example: Let X = {a, b, c} and let T = {¢,{a},{a, b}, {a, c}, X}. Find all the limit points of
the sets (i) A = {b, c} (ii) B = {a, c}.

Solution: N(a) = {{a},{a, b}, {a,c}, X}, N(b) = {{a,b}, X} and N(c) = {{a, c}, X}.
()A={b,c}

({a} —{aPhNn{b,c} = ¢pN{b,c} = ¢.

~ a is not limit point of A.

({a, b} - {b})n{b, C} = {a}ﬂ{b, C} = ¢

~ b is not limit point of A.

({a, C} - {C})n{b, C} = {a}ﬂ{b, C} = ¢

~ ¢ is not limit point of A.

Hence D(A) = ¢.

(i) B = {a, c}.

({a} —{ahN{a c} = ¢N{a,c} = ¢.

~ a is not limit point of B.

({a, b} — {b})N{a,c} = {a}N{a, c} = {a} = .

~ b is limit point of B.

({ar C} - {C})n{a! C} = {a}ﬂ{a, C} = {a} 2 ¢

~ c is limit point of B.

13
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Hence D(B) = {b, c}.

Definition: Let A be a subset of a topological space (X,7) and let x € X. Then x is called an
adherent point of A iff every nhd of x contains a point of A. The set of all adherent points of A
is called the adherence of A and denoted by Adh(A).i.e NNA # ¢, for every nhd N of x.

Example: Let X = {1,2,3} and let t = {¢, {1}, {2,3}, X}. Find all the adherent points of the set
A={12}

Solution: N(1) = {{1},{1,2},{1,3}, X}, N(2) = {{2,3}, X} and N(3) = {{2,3}, X}.
{(13N{1,2} = {1} # ¢, {1,2}N{1,2} = {1,2} # ¢, {1,3}N{1,2} = {1} # ¢ and
XN{1,2} = {1,2} # ¢.

=~ 1 is adherent point of A.

{2,31N{1,2} = {2} # ¢ and XN{1,2} = {1,2} # ¢.

=~ 2 is adherent point of A.

{2,3}1N{1,2} = {2} # ¢ and XN{1,2} = {1,2} # ¢.

=~ 3 is adherent point of A.

The adherent points of A are 1,2,3. Hence Adh(4) = {1,2,3}.

Theorem: Let (X, t) be a topological space and let A be a subset of X. Then A is closed if and
only if D(A4) c A.

Proof: Let A be a closed. Then A€ is open and to each x € A€ there exists a nhd N,, of x such
that N, € A°. Since ANA€ = ¢, the nhd N, contains no point of A and so x is not a limit
point of A. Thus no point of A€ can be a limit point of A4, that is, A contains all its limit points.
Hence D(A) € A.

Conversely, let D(A) € A and let x € A°. Then x ¢ A. Since D(A) € A, x & D(A). Hence
there exists a nhd N, of x such that N,NA = ¢ so that N,, € A€. Thus A¢ contains a nhd of

each of its points and so A€ is open, that is, A is closed.

Properties of derived sets
Theorem: Let A, B be subsets of a topological space (X, ). Then:
(i) D(¢) = ¢.
(i) A € B = D(A) < D(B).
(iii) D(ANB) < D(A)ND(B).
(iv) D(AUB) = D(A)UD(B).

14
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Proof: (i) Since ¢ is closed, D(¢) S ¢. But ¢ is a subset of every set and so ¢ S D(¢).
Hence D(¢) = ¢.

(ii) Let p € D(A) so that p is a limit point of A. Then every nhd of p contains a point of A
different from p. Since A € B, every nhd of p must also contain a point of B different from p.
Hence p is also a limit point of B, that is, p € D(B). Hence D(A) < D(B).

(iii) Since ANB < A and ANB < B, by (ii) we have D(ANB) € D(A) and D(ANB) € D(B).
Hence D(ANB) € D(A)ND(B).

(iv) Since A € AUB and B € AUB, it follows from (ii) that D(4) € D(AUB) and D(B) <
D(AUB) and hence D(A)UD(B) < D(AUB).

Conversely, let x € D(A)UD(B) = x ¢ D(AUB).

If x ¢ D(A)UD(B), then x ¢ D(A) and x & D(B), that is, x is neither a limit point of A nor a
limit point of B. Hence there exist nhds N; and N, of x such that (N; — {x})NA = ¢ and
(N, —{xPDNB=¢p.cecvenen..... (1)

Now N = N;NN, is a nhd of x which by (1) contains no point of AUB except x. It follows
that x ¢ D(AUB) as required. Hence D(AUB) € D(A)UD(B).

Thus D(AUB) = D(A)UD(B).

Closure
Definition: Let (X, 7) be a topological space and let A be a subset of X. Then the intersection
of all 7-closed containing the set A is called the closure of A and denoted by A or c(A) or
cl(A). i.e cl(A) = N{F:F isclosed, A € F}.

Example: Let X = {a, b, c,d} and let t = {¢, {a},{a, c},{a, d},{a, c,d}, X}. Find the closure
of the sets (i) {b, c} (ii) {b} (iii) {b, c,d}.

Solution: The closed subsets of X are X, {b, ¢, d},{b,d},{b,c},{b} and ¢.

cl(A) = N{F:Fisclosed, A € F}.

() cl({b, c}) = XN{b,c,d}N{b,c} = {b, c}.

(ii) cl({b}) = XN{b, c,d}N{b,d}N{b, c}N{b} = {b}.

(iii) cl({b, c,d}) = XN{b,c,d} = {b,c,d}.

Theorem: Let A be a subset of a topological space (X, 7). Then:
(i) cL(A) is the smallest closed set containing A.
(ii) A is closed iff cl(A) = A.

Proof: (i) This follows from definition.

15
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(ii) If A is closed, then A itself is the smallest closed set containing A and hence cl(A) = A.

Conversely, let cl(A) = A. By (i), cl(A) is closed and so A is also closed.

Theorem: cl(A) = AUD(A).
Proof: H.W.

Corollary: cl(A) = Adh(A) = {x: each nhd of x intersects A}.
Proof: x € Adh(A) < every nhd of x intersects A
& x € A or every nhd of x contains a point of A other than x.
S xeAorx e D(A)
& x € AUD(A)
< x € cl(A).

Example: Consider the co-finite topological space (X, ) and find the closure of any subset A
of X.

Solution: Here t consists of the empty set ¢ and all those subsets of X whose complements
are finite so that the closed subsets of X are all the finite subsets of X together with X. Hence
if A € X is finite, its closure cl(A) is A itself since A is closed and if A is infinite then the
only closed super set of A'is X and so cl(A) = X. Thus cl(A) = A if Ais finite and cl(4) = X

if A is infinite.

Properties of closure
Theorem: Let (X, t) be a topological space and let A4, B be any subsets of X. Then:
(i) cl(¢) = ¢, cl(X) = X.
(i) A < cl(A).
(iii) A € B = cl(A) < cl(B).
(iv) cl(AUB) = cl(A)Ucl(B).
(v) cl(ANB) € cl(A)Ncl(B).
(vi) cl(cl(A)) = cl(A).
Proof: (i) Since ¢ is closed, we have cl(¢) = ¢.
Since X is closed, we have cl(X) = X.
(ii) By theorem (i), cl(A) is the smallest closed set containing A and so A € cl(A).
(iii) By part (ii), B < cl(B). Since A € B, we have A € cl(B). But cl(B) is a closed set.
Thus cl(B) is a closed set containing A. Since cl(A) is the smallest closed set containing A4,
we have cl(A) € cl(B). Hence A € B = cl(A) < cl(B).
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(iv) Since A € AUB and B < AUB, we have cl(A) < cl(AUB) and cl(B) < cl(AUB) by
part (iii). Hence cl(A)Ucl(B) € cl(AUB)............ (D)

Since cl(A) and cl(B) are closed sets, cl(A)Ucl(B) is also closed. Also A < cl(A) and B <
cl(B) implies that AUB < cl(A)Ucl(B). Thus cl(A)Ucl(B) is a closed set containing AUB.
Since cl(AUB) is the smallest closed set containing AUB, we have

cl(AUB) € cl(A)Ucl(B)............ 2)

From (1) and (2), we have cl(AUB) = cl(A)Ucl(B).

(v) Since ANB < A and ANB < B, by part (iii) we have cI(ANB) < cl(A) and

cl(ANB) < cl(B). Hence cl(ANB) < cl(A)Ncl(B).

(vi) Since cl(A) is a closed set, we have cl(cl(A)) = cl(A) by theorem (ii) [A is closed iff
cl(A) = A].

Theorem: Let (X, 7) be a topological space and let A be subset of X. Then the following
statements are equivalent:
(i) A is closed.
(i) cl(A4) = A.
(iii) A contains all its limit points.
Proof: (i) = (ii) : A is closed = cl(A) = A. By theorem part (ii) [A is closed iff cl(4) = A]
(i) = (iii) : cl(A) = A= AUD(A) = A. By theorem [cl(4A) = AUD(A)]
= D(A) € A = A contains all its limit points.
(iili) = (i) : A contains all its limit points = D(A) € A

= AUD(A) =A
= cl(A)=A
= A is closed. By theorem part (ii)

Interior of a set
Definition: Let (X, ) be a topological space and let A be a subset of X. A point x € X is said
to be an interior point of A iff A is a neighbourhood of x, that is, iff there exists an open set G
such that x € G < A. The set all interior points of A is called the interior of A and is denoted

by A° or A* or i(A) or int(A).

Example: Let X = {a, b,c,d} and let t = {¢,{a},{a, c},{a,d},{a, c,d}, X}. Find the interior
points of the sets (i) A = {b,c} (ii)) B = {a,d}

Solution: ()a € {a} € {b,c}, a€{a,c} £ {b,c}, a€{ad} L {b,c}, a€{a,cd} & {b,c}
anda € X € {b, c}.
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~ a is not interior point of A.

beX Z{b,c}

~ b is not interior point of A.
c€{a,c}€{b,c},ce{a,c,d}€{bcandc e X & {b,c}.
~ ¢ Is not interior point of A.

d€f{ad} ¢ {b,c},de{acd}&{bcandd € X & {b,c}.
~ d is not interior point of A.

int(A) = ¢.

(ii) a € {a} < {a,d}

~ a is interior point of B.

beX & {ad}

~ b is not interior point of B.
c€{a,c}%{ad},cefacd} < {adtandc € X & {a,d}.
=~ c is not interior point of B.

d €{a,d} € {a,d}

~ d is interior point of B.

int(B) = {a,d}.

Theorem: int(A) = U{G: G isopen, G € A}.

Proof: x € int(A) < Aisanhdof x
& there exists an open set G suchthatx € G € A
< x € U{G: G isopen, G S A}.

Hence, int(A) = U{G: G isopen, G < A}.

Theorem: Let (X, t) be a topological space and let A be a subset of X. Then:

(i) int(A) is an open set.

(ii) int(A) is the largest open set contained in A.

(iii) A is an open set iff int(4) = A.

Proof: (i) Let x € int(A4). Then x is an interior point of A. Hence by definition, A is a nhd of
x. Then there exists an open set G such that x € G € A. Since G is open, it is a nhd of each of
its points and so A is also a nhd of each point of G. It follows that every point of G is an
interior point of A so that G < int(A). Thus it is shown that to each x € int(A), there exists
an open set G such that x € G < int(A). Hence int(A) is a nhd of each of its points and

consequently int(A) is open set.
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(ii) Let G be any open subset of A and let x € G so that x € G < A. Since G is open, A is a
nhd of x and consequently x is an interior point of A. Hence x € int(A). Thus we have shown
that x € G = x € int(A4) and so G < int(A) € A. Hence int(A) contains every open subset
of A and it is therefore the largest open subset of A.

(iii) Let int(A) = A. By part (i) int(A) is an open set and therefore A is also open.
Conversely, let A be open set. Then A is surely identical with the largest open subset of A.

But by part (ii), int(A) is the largest open subset of A. Hence int(A) = A.

Properties of interior

Theorem: Let (X, ) be a topological space and let A, B be any subsets of X. Then:
(i) int(p) = ¢, int(X) = X.
(ii) int(A) < A.
(iii) A € B = int(A) < int(B).
(iv) int(ANB) = int(A)Nint(B).
(v) int(A)Uint(B) < int(AUB).
(vi) int(int(A)) = int(4).
Proof: (i) Since ¢ and X are open sets, we have by part (iii) of theorem [A is an open set iff
int(A) = 4], int(¢p) = ¢, int(X) = X.
(ii) x € int(A) = x is an interior point of A

= Aisanhdof x = x € A.
Hence int(A) € A.
(iii) Let x € int(A). Then x is an interior point of A and so A is a nhd of x. Since A € B, B is
also a nhd of x. This implies that x € int(B). Hence int(A) < int(B).
(iv) Since ANB < A and ANB < B, by part (iii) we have int(ANB) < int(A) and
int(ANB) <€ int(B). Hence int(ANB) < int(A)Nint(B)............. (1)
Let x € int(A)Nint(B). Then x € int(A) and x € int(B). Hence x is an interior point of
each of the sets A and B. It follows that A and B are nhds of x so that ANB is also a nhd of x.
Hence x € int(ANB). Hence int(A)Nint(B) < int(ANB)............ ()
From (1) and (2), we get int(ANB) = int(A)Nint(B).
(v) Since A € AUB and B < AUB, we have int(A) <€ int(AUB) and int(B) < int(AUB)
by part (iii). Hence int(A)Uint(B) < int(AUB).
(vi) By (i) of theorem, int(A) is an open set. Hence by part (iii) of the same theorem

int(int(A)) = int(A).
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Exterior of a set
Definition: Let (X, t) be a topological space and let A be a subset of X. A point x € X is said
to be an exterior point of A iff it is an interior point of the complement of A4, that is, iff there
exists an open set G such that x € G < A° or equivalently x € G and GNA = ¢. The set all
exterior points of A is called the exterior of A and is denoted by A® or e(A) or ext(A).
i.e ext(A) = int(A°).

Example: Let X = {a, b,c,d} and let T = {¢,{a}, {a, c},{a, d},{a, c,d}, X}. Find the exterior
points of the set A = {b, c}.
Solution: a € {a}, {a}N{b, c} = ¢.
~ a is exterior point of A.

be X, XN{b,c} ={b,c} # ¢.

~ b is not exterior point of A.

c €{a,c},{a ciN{b,c} ={c} # ¢.
=~ ¢ IS not exterior point of A.

d € {a,d}, {a,d}N{b,c} = ¢.

=~ d is exterior point of A.

ext(A) = {a,d}.

Remark: (i) ANext(A) = ¢.

(ii) ext(A) is open set and is the largest open set contained in A€.

Theorem: Let (X, 7) be a topological space and A € X. Then ext(A) = U{G € 7: G S A°}.
Proof: By definition, ext(A) = int(A°) and since int(A¢) = U{G € 7: G < A}.
Hence ext(4) = U{G € 7: G < A°}.

Remark: (i) int(A) = ext(A) = (cl(A%))°".
(ii) ext(A) = (cl(A))°.

Properties of exterior
Theorem: Let (X, t) be a topological space and let A4, B be any subsets of X. Then:
(i) ext(X) = ¢, ext(¢p) = X.
(i) ext(A) < A°.
(iii) ext(A) = ext((ext(A))).
(iv) A € B = ext(B) <€ ext(A).
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(V) int(A) € ext(ext(A)).
(vi) ext(AUB) = ext(A)Next(B).
Proof: (i) ext(X) = int(X¢) = int(¢) = ¢.
ext(¢p) = int(¢€) = int(X) = X.
(i) ext(A) = int(A°) < A€ by part (ii) of theorem [int(A4) < A].
(iii) ext((ext(A))°) = ext((int(A))°)
int(((int(A)))°)
int(int(A€)) [since (A°)€ = A, int(int(A4)) = int(A)]

= int(4°)
= ext(A).

(iv) A € B = B¢ € A° = int(B°) < int(A°)

= ext(B) C ext(4).

(v) By part (ii), we have ext(A) € A€. Then part (iv) gives ext(A€) < ext(ext(A)).

But int(A4) = ext(A°). Hence int(A) S ext(ext(A)).

(vi) ext(AUB) = int((AUB))
= int(A°NB°) [By De-Morgan Law]
= int(A°)Nint(B€) By part (iv) of theorem [int(ANB) = int(A)Nint(B)]
= ext(A)Next(B).

Frontier of a set
Definition: Let (X, t) be a topological space and let A be a subset of X. A point x € X is said
to be a frontier point (or boundary point) of A iff it is neither interior nor exterior point of A.
The set all frontier points of A is called the frontier of A and is denoted by Fry(A) or Fr(A).
i.e Fr(A) = cl(A)N(int(A))".

Example: Let X = {a, b,c,d} and let T = {¢, {a}, {a, c},{a,d},{a,c,d}, X}. Find the frontier
points of the set A = {b, c}.
Solution: cl(A) = cl({b, c}) = {b,c}, int(A) = int({b,c}) = ¢.
(int(A) = ¢p¢ = X.
Fr(4) = cl(A)N(int(4))°
={b,c}NX = {b,c}.
Hence Fr(A) = {b, c}.
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Theorem: Let (X, 1) be a topological space and let A be a subset of X. Then int(A), ext(A)
and Fr(A) are disjoint.
Proof: By definition ext(A) = int(A€). Also int(A) € A and int(A€) < A°.
Since ANA°€ = ¢, it follows that int(A) Next(A) = int(A)Nint(A°) = ¢.
A gain by the definition of frontier, we have
x € Fr(A) & x ¢ int(A) and x € ext(A)
& x € int(A)Uext(A)
& x € [int(A)Uext(A)]°.
Thus Fr(A) = [int(A)Uext(A)]°.
It follows that Fr(A)Nint(A) = ¢ and Fr(A)Next(A) = ¢.
Hence X = int(A)Uext(A)UFr(A).

Example: Let X = {a,b,c,d,e} and let t = {¢,{b},{c,d},{a,c,d},{b,c,d},{a b,c,d}, X}
Find (1) interior (2) exterior (3) frontier of the following subsets of X:

(YA ={c} (ii)B={ab} (iii)C ={a,c,d} (iv)D ={b,c d}.

Solution: H.W.

Definition: Let (X, 7) be a topological space and let A, B be subsets of X. Then:

(i) A is said to be dense in B iff B € cl(A).

(ii) A is said to be dense in X or every where dense iff cl(4) = X.

It follows that A is everywhere dense iff every point of X is an adherent point of A.
(iii) A is said to be no where dense or non dense in X iff int(cl(A)) = ¢.

(iv) A is said to be dense in itself iff A < D(A).

Definition: A subset A of a topological space (X, 1) is perfect iff A is dense in itself and
closed, that is, iff A = D(A).

Definition: A topological space X is said to be separable iff X contains a countable dense
subset, that is, iff there exists a countable subset A of X such that cl(4) = X.

Example: The usual topological space (R, U) is separable.
Solution: Since the set Q of rational numbers is a countable dense subset of R.
Q € R which is countable and cl(Q) = R.

Definition: Let (X, 1) be a topological space and let Y be a subset of X we may construct a

topology 7y for Y which is called the relative topology or the relativization of tto Y.
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Definition: Let (X,7) be a topological space and let Y be a subset of X the t-relative

topology for Y is the collection 7y given by 7, = {GNY: G € 1}.

Remark: The topological space (Y, ty) is called a subspace of (X, t) the topology 7y on Y is

called induced by t.

Example: Consider the topology = = {¢,{1},{3,4},{1,3,4}, X} on X ={1,2,3,4} and the
subset Y = {1,2,3} of X.

Solution: Let Y = {1,2,3} € X. We then have

dN{1,2,3} = ¢, {1IN{1,2,3} = {1}, {3,4}N{1,2,3} = {3}, {1,3,4}N{1,2,3} = {1,3} and
XN{1,2,3}={1,2,3} =Y.

Hence the relativization of tto Y is ty = {¢, {1}, {3},{1,3},Y}.

Theorem: Let (X, t) be a topological space and let Y be a subset of X. Then the collection
7y = {GNY:G € T} isatopologyonY.
Proof: H.W.

Definition: A property of a topological space is said to be hereditary if every subspace of the

space has that property.

Theorem: Let (Y, V) be a subspace of a topological space (X, t) and let (Z, W) be a subspace
of (Y, V). Then (Z, W) is a subspace of (X, 7).

Theorem: Let (Y, ty) be a subspace of a topological space (X, 7). Then:
(i) asubset A of Y is closed in Y iff there exists a closed set F in X such that A = FNY.
(i) forevery A € Y, cly(A) = clxy(A)NY.
(iii) a subset M of Y is a Ty-nhd of a point y € Y iff M = NNY for some t-nhd N of y.
(iv) a point y € Y is a ty-limit point of A € Y iff y is a t-limit point of 4, Dy (A) = D(A)NY.
(v) forevery A € Y, inty(A) 2 inty(A).
(vi) forevery A C Y, Fry(A) € Fry(A).
Proof: (i) AisclosedinY & Y —AisopeninY
& Y — A = GNY for some open subset G of X
= A=Y-(GNY) = -6)U(Y —Y) [De-Morgan Law]
& A=Y —G [sinceY —Y = ¢]
= A=YNG*
& A =YNF where F = G¢isclosed in X, since G is open in X.
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(ii) By definition, cly(A) = N{K:K isclosedinY and A € K}
= N{FNY:F isclosed in X and A € FNY} by (i)
= [N{F:F isclosed in X and A < F}]NY
= cly(A)NY.
(iii) H.W.
(iv) y is a y-limit point of A & (M — {y})NA # ¢, V ty-nhd M of y
< (NNY) —{yDNA # ¢, V t-nhd N of y by (iii)
< (N—-{yphNA # ¢,V t-nhd N of y
& yisat-limit point of A.
(V) x € inty(A) = x is a t-interior point of A
= Aisart-nhd of x
= ANY is a ty-nhd of x by (iii)
= Aisaty-nhdofx [sinceACY = ANY = A]
= x € inty(A4).
(vi) HW.

Example: Give an example to show that in general inty (A) # inty (A).

Solution: Let X = {a, b,c,d, e} and let t = {¢, {a},{a, b},{a,c,d},{a,b,e},{a,b,c,d}, X} be
a topological space. Let Y = {a, c,e}. Then ty, = {ANY: A € 7} so that the members of z, are:
oNY = ¢, {a}nNY ={a}, {a,b}NY ={a}, {a,cd}NY ={a,c}, {a b,e}NY = {a,e},
{a,b,c,d}NY = {a,c}and XNY =Y. Thus 7y = {¢, {a}, {a,c},{a e}, Y}

Now consider the subset A = {a, e} of Y. Then inty(A) = {a} and inty(A) = {a,e}.

Theorem: Let Y be a subspace of a topological space X. If A € Y is open (closed) in X, then
A is also open (closed) in Y.
Proof: H.W.

Theorem: Let (Y, 7y) be a subspace of a topological space (X,7) and let B be a base for .
Then By = {BNY: B € B} is a base for 7.

Proof: Let H be a 7y-open subset of Y and let x € H. Then there exists a T-open subset G of
X such that H = GNY. Since B is a base for 7, there exists a set B € f such that x € B € G.
Since H €Y, it follows that x € Y and consequently x € BNY € GNY = H. Thus to each
x € H, there exists a member BNY of By such that x € BNY € H, that is, H =
U{BNY:BNY € By and BNY < H}. Hence By is a base for 7.
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