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Abstract: In this paper, we introduce a new class of sets called 𝛼𝑚-kernel set and study their basic properties in 

topological spaces. We introduce and investigate some separation axioms by using 𝛼𝑚-kernel set and the 𝛼𝑚-

closed set. Further, we also introduce topological 𝛼𝑚-𝑘𝑟-space. 
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1. Introduction 

In 1943, N. A. Shanin [9] offered a new separation axiom called 𝑅0-space. In the same year, J. W. T. Youngs [5] 

introduced the first separation axiom between 𝑇0 and 𝑇1 spaces. In 1965, O. Njastad [10] introduced the concept 

of 𝛼-open sets in topological spaces. In 1970, N. Levine [8] first considered the concept of generalized closed 

sets were defined and investigated. In 2012, L. A. Al-Swidi and B. Mohammed [6] introduced the separation 

axioms via kernel set in topological spaces. In 2014, M. Mathew and R. Parimelazhagan [7] introduced the 

concept of 𝛼𝑚-closed sets in topological spaces. The purpose of this paper is to introduce the concept 𝛼𝑚-kernel 

set and to study some of its properties in topological spaces. We also investigate some of the properties of 𝛼𝑚-

separation axioms like 𝛼𝑚-𝑅𝑖-space, 𝑖 = 0,1 and 𝛼𝑚-𝑇𝑖-space, 𝑖 = 0,1,2. Also in this paper we introduce 

topological 𝛼𝑚-𝑘𝑟-space iff 𝛼𝑚-kernel of a subset 𝐴 of 𝑋 is an 𝛼𝑚-open set. Via this kind of a topological 

space, we give a new characterization of separation axioms lying between 𝛼𝑚-𝑇𝑖-space, 𝑖 = 0,1,2. 

   

2. Preliminaries 

Throughout this paper (𝑋, 𝜏) or simply 𝑋 will always denote a topological space. For a subset 𝐴 of a topological 

space (𝑋, 𝜏), 𝑖𝑛𝑡(𝐴), 𝑐𝑙(𝐴) and 𝐴𝑐 represents the interior of 𝐴, the closure of 𝐴 and the complement of 𝐴 in 𝑋 

respectively. 
 

Definition 2.1:[3] The intersection of all open subsets of a topological space (𝑋, 𝜏) containing 𝐴 is called the 

kernel of 𝐴 (briefly 𝑘𝑒𝑟(𝐴) ), this means that 𝑘𝑒𝑟(𝐴) = ⋂{𝐺 ∈ 𝜏: 𝐴 ⊆ 𝐺}. 
 

Definition 2.2:[4] Let (𝑋, 𝜏) be a topological space, a point 𝑥 is an adherent point of 𝐴 ⊆ 𝑋 if and only if for 

each 𝑈 ∈ 𝜏, 𝑥 ∈ 𝑈 then 𝐴⋂𝑈 ∖ {𝑥} ≠ 𝜙. 
 

Definition 2.3:[10] A subset 𝐴 of a topological space (𝑋, 𝜏) is called alpha open set (briefly 𝛼-open set) if 

𝐴 ⊆ 𝑖𝑛𝑡(𝑐𝑙(𝑖𝑛𝑡(𝐴))) and alpha closed set (briefly 𝛼-closed set) if 𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝐴))) ⊆ 𝐴. The 𝛼-closure of a set 𝐴 

of (𝑋, 𝜏) is the intersection of all 𝛼-closed sets that contain 𝐴 and is denoted by 𝛼𝑐𝑙(𝐴). 
 

Definition 2.4: A subset 𝐴 of a topological space (𝑋, 𝜏) is called: 

(i) generalized closed set (briefly g-closed set) [8] if 𝑐𝑙(𝐴) ⊆ 𝑈 whenever 𝐴 ⊆ 𝑈 and 𝑈 is open in 𝑋. 

(ii) alpha generalized closed set (briefly 𝛼g-closed set) [2] if 𝛼𝑐𝑙(𝐴) ⊆ 𝑈 whenever 𝐴 ⊆ 𝑈 and 𝑈 is open in X. 

(iii) generalized alpha closed set (briefly g𝛼-closed set) [1] if 𝛼𝑐𝑙(𝐴) ⊆ 𝑈 whenever 𝐴 ⊆ 𝑈 and 𝑈 is 𝛼-open in 

X. 

  

Remark 2.5:[8,10] In a topological space (𝑋, 𝜏), the following hold and the converse of each statement is not 

true: 

(i) Every closed set is 𝛼-closed. 

(ii) Every closed set is g-closed. 
 

Remark 2.6:[1,2] In a topological space (𝑋, 𝜏), the following hold and the converse of each statement is not 

true: 

(i) Every g-closed set is 𝛼g-closed. 

(ii) Every 𝛼-closed set is g𝛼-closed. 

(iii) Every g𝛼-closed set is 𝛼g-closed. 
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Definition 2.7:[7] A subset 𝐴 of a topological space (𝑋, 𝜏) is called 𝛼𝑚-closed set if 𝑖𝑛𝑡(𝑐𝑙(𝐴)) ⊆ 𝑈 whenever 
𝐴 ⊆ 𝑈 and 𝑈 is 𝛼-open. The complement of 𝛼𝑚-closed set in 𝑋 is 𝛼𝑚-open in 𝑋, the family of all 𝛼𝑚-open (𝛼𝑚-

closed) sets of a topological space (𝑋, 𝜏) is denoted by 𝛼𝑚-𝑂(𝑋) (𝛼𝑚-𝐶(𝑋)). 
 

Definition 2.8:[7] The intersection of all 𝛼𝑚-closed sets in 𝑋 containing 𝐴 is called 𝛼𝑚-closure of 𝐴 and is 

denoted by 𝛼𝑚-𝑐𝑙(𝐴), 𝛼𝑚-𝑐𝑙(𝐴) = ⋂{𝐵 ∶ 𝐴 ⊆ 𝐵, 𝐵 is 𝛼𝑚-closed }. 
 

Remark 2.9:[7] In a topological space (𝑋, 𝜏), the following hold and the converse of each statement is not true: 

(i) Every closed set is 𝛼𝑚-closed. 

(ii) Every 𝛼𝑚-closed set is 𝛼-closed. 

(iii) Every 𝛼𝑚-closed set is 𝛼g-closed. 

(iv) Every 𝛼𝑚-closed set is g𝛼-closed. 
 

Theorem 2.10:[7] A set 𝐴 is 𝛼𝑚-closed set iff 𝑖𝑛𝑡(𝑐𝑙(𝐴)) − 𝐴 contains no nonempty 𝛼𝑚-closed sets. 
  

Theorem 2.11:[7] Let 𝐵 ⊆ 𝑌 ⊆ 𝑋, if 𝐵 is 𝛼𝑚-closed set relative to 𝑌 and 𝑌 is open then 𝐵 is 𝛼𝑚-closed set in 𝑋. 
 

Theorem 2.12:[7] If 𝐴 is 𝛼𝑚-closed set and 𝐴 ⊆ 𝐵 ⊆ 𝑖𝑛𝑡(𝑐𝑙(𝐴)) then 𝐵 is 𝛼𝑚-closed set. 
 

Theorem 2.13:[7] The intersection of 𝛼𝑚-closed set and a closed set is 𝛼𝑚-closed set. 
 

Theorem 2.14:[7] If 𝐴 and 𝐵 are two 𝛼𝑚-closed sets defined for a nonempty set 𝑋, then their intersection 𝐴⋂𝐵 

is 𝛼𝑚-closed set in 𝑋. 
 

Remark 2.15:[7] The union of two 𝛼𝑚-closed sets need not be 𝛼𝑚-closed set. 
 

Remark 2.16: The following are the implications of 𝛼𝑚-closed set and the reverse is not true. 

 

 

 

 

 

 

 

3. 𝜶𝒎-Kernel and 𝜶𝒎-𝑹𝒊-Spaces, 𝒊 = 𝟎, 𝟏 

Definition 3.1: The intersection of all 𝛼𝑚-open subset of 𝑋 containing 𝐴 is called the 𝛼𝑚-kernel of 𝐴 (briefly 

𝛼𝑚-𝑘𝑒𝑟(𝐴)), this means 𝛼𝑚-𝑘𝑒𝑟(𝐴) = ⋂{𝐺 ∈ 𝛼𝑚-𝑂(𝑋): 𝐴 ⊆ 𝐺}. 
 

Definition 3.2: Let 𝑥 be a point of a topological space 𝑋. The 𝛼𝑚-kernel of 𝑥, denoted by 𝛼𝑚-𝑘𝑒𝑟({𝑥}) is 
defined to be the set 𝛼𝑚-𝑘𝑒𝑟({𝑥}) = ⋂{𝐺: 𝐺 ∈ 𝛼𝑚-𝑂(𝑋) and 𝑥 ∈ 𝐺}.  
 

Lemma 3.3: Let (𝑋, 𝜏) be a topological space, then 𝑦 ∈ 𝛼𝑚-𝑘𝑒𝑟({𝑥}) if and only if 𝑥 ∈ 𝛼𝑚-𝑐𝑙({𝑦}) for each 
𝑥 ≠ 𝑦 ∈ 𝑋. 
 

Proof: Suppose that 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑥}). Then there exists 𝛼𝑚-open set 𝑈 containing 𝑥 such that 𝑦 ∉ 𝑈. 

Therefore, we have 𝑥 ∉ 𝛼𝑚-𝑐𝑙({𝑦}). The converse part can be proved in a similar way. 
 

Definition 3.4: A set 𝐴 in topological space (𝑋, 𝜏) is called 𝛼𝑚-neighborhood (briefly 𝛼𝑚-nhd) of a point 𝑥 if 

there exists 𝛼𝑚-open set 𝐵 such that 𝑥 ∈ 𝐵 ⊆ 𝐴. 
 

Lemma 3.5: Let (𝑋, 𝜏) be a topological space and 𝐴 be a subset of 𝑋. Then, 𝛼𝑚-𝑘𝑒𝑟(𝐴) = {𝑥 ∈ 𝑋: 𝛼𝑚-

𝑐𝑙({𝑥})⋂𝐴 ≠ 𝜙}. 
 

Proof: Let 𝑥 ∈ 𝛼𝑚-𝑘𝑒𝑟(𝐴) and 𝛼𝑚-𝑐𝑙({𝑥})⋂𝐴 = 𝜙. Hence 𝑥 ∉ 𝑋 − 𝛼𝑚-𝑐𝑙({𝑥}) which is 𝛼𝑚-open set 

containing 𝐴. This is impossible, since 𝑥 ∈ 𝛼𝑚-𝑘𝑒𝑟(𝐴).  

closed 𝛼𝑚-closed 

g𝛼-closed 

𝛼-closed 

𝛼g-closed g-closed 
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Consequently, 𝛼𝑚-𝑐𝑙({𝑥})⋂𝐴 ≠ 𝜙. Next, let 𝑥 ∈ 𝑋 such that 𝛼𝑚-𝑐𝑙({𝑥})⋂𝐴 ≠ 𝜙 and suppose that 𝑥 ∉ 𝛼𝑚-

𝑘𝑒𝑟(𝐴). Then there exists 𝛼𝑚-open set 𝑈 containing 𝐴 and 𝑥 ∉ 𝑈. Let 𝑦 ∈ 𝛼𝑚-𝑐𝑙({𝑥})⋂𝐴. Hence, 𝑈 is 𝛼𝑚-nhd 

of 𝑦 which does not contain 𝑥. By this contradiction 𝑥 ∈ 𝛼𝑚-𝑘𝑒𝑟(𝐴) and the claim. 
 

Definition 3.6: Let (𝑋, 𝜏) be a topological space. A point 𝑥 is said to be:  

(i) 𝛼𝑚-adherent point of 𝐴 ⊆ 𝑋 if and only if for each 𝑈 ∈ 𝛼𝑚-𝑂(𝑋), 𝑥 ∈ 𝑈 then 𝐴⋂𝑈 ∖ {𝑥} ≠ 𝜙. 

(ii) 𝛼𝑚-kernelled point of 𝐴 ⊆ 𝑋 (briefly 𝑥 ∈ 𝛼𝑚-𝑘𝑒𝑟(𝐴)) if and only if for each 𝐹 𝛼𝑚-closed set contains 𝑥 

then 𝐹⋂𝐴 ≠ 𝜙. 

(iii) boundary 𝛼𝑚-kernelled point of 𝐴 (briefly 𝑥 ∈ 𝛼𝑚-𝑘𝑒𝑟𝑏𝑑(𝐴)) if and only if for each 𝛼𝑚-closed set 𝐹 

contains 𝑥 then 𝐹⋂𝐴 ≠ 𝜙 and 𝐹⋂𝐴𝑐 ≠ 𝜙. 

(iv) derived 𝛼𝑚-kernelled point of 𝐴 (briefly 𝑥 ∈ 𝛼𝑚-𝑘𝑒𝑟𝑑𝑟(𝐴)) if and only if for each 𝐹 𝛼𝑚-closed set contains 

𝑥 then 𝐴⋂𝐹 {𝑥}⁄ ≠ 𝜙. 
 

Definition 3.7: By definition (3.6)(ii), we have the following: For every two distinct point 𝑥 and 𝑦 of  𝑋, 𝛼𝑚-

𝑘𝑒𝑟({𝑥}) = {𝑦: 𝑥 ∈ 𝐹𝑦 , 𝐹𝑦
𝑐 ∈ 𝛼𝑚-𝑂(𝑋)}. 

 

Theorem 3.8: Let (𝑋, 𝜏) be a topological space and 𝑥 ≠ 𝑦 ∈ 𝑋. Then 𝑥 is 𝛼𝑚-kernelled point of {𝑦} if and only 

if 𝑦 is an 𝛼𝑚-adherent point of {𝑥}. 
 

Proof: Let 𝑥 be an 𝛼𝑚-kernelled point of {𝑦}. Then for every 𝛼𝑚-closed set 𝐹 such that 𝑥 ∈ 𝐹 implies 𝑦 ∈ 𝐹, 

then 𝑦 ∈ ⋂{𝐹: 𝑥 ∈ 𝐹}, this means 𝑦 ∈ 𝛼𝑚-𝑐𝑙({𝑥}). Thus 𝑦 is an 𝛼𝑚-adherent point of {𝑥}. 
Conversely, let 𝑦 be an 𝛼𝑚-adherent point of {𝑥}. Then for every 𝛼𝑚-open set 𝑈 such that 𝑦 ∈ 𝑈 implies 𝑥 ∈ 𝑈, 

then 𝑥 ∈ ⋂{𝑈: 𝑦 ∈ 𝑈}, this means 𝑥 ∈ 𝛼𝑚-𝑘𝑒𝑟({𝑦}). Thus, 𝑥 is 𝛼𝑚-kernelled point of {𝑦}.                      
 

Theorem 3.9: Let (𝑋, 𝜏) be a topological space and 𝐴 ⊆ 𝑋 and let 𝛼𝑚-𝑘𝑒𝑟𝑑𝑟(𝐴) be the set of all derived 𝛼𝑚-

kernelled derived points of 𝐴, then 𝛼𝑚-𝑘𝑒𝑟(𝐴) = 𝐴⋃𝛼𝑚-𝑘𝑒𝑟𝑑𝑟(𝐴). 
 

Proof: Let 𝑥 ∈ 𝐴⋃𝛼𝑚-𝑘𝑒𝑟𝑑𝑟(𝐴) and if 𝑥 ∈ 𝛼𝑚-𝑘𝑒𝑟𝑑𝑟(𝐴), then for every 𝛼𝑚-closed set 𝐹 intersects 𝐴 (in a point 

different from 𝑥). Therefore, 𝑥 ∈ 𝛼𝑚-𝑘𝑒𝑟({𝑥}). Hence, 𝛼𝑚-𝑘𝑒𝑟𝑑𝑟(𝐴) ⊆ 𝛼𝑚-𝑘𝑒𝑟(𝐴), it follows that 𝐴⋃𝛼𝑚-

𝑘𝑒𝑟𝑑𝑟(𝐴) ⊆ 𝛼𝑚-𝑘𝑒𝑟(𝐴). To demonstrate the reverse inclusion, we consider 𝑥 be a point of 𝛼𝑚-𝑘𝑒𝑟(𝐴). If 𝑥 ∈
𝐴, then 𝑥 ∈ 𝐴⋃𝛼𝑚-𝑘𝑒𝑟𝑑𝑟(𝐴). Suppose that 𝑥 ∉ 𝐴. Since 𝑥 ∈ 𝛼𝑚-𝑘𝑒𝑟(𝐴), then for every 𝛼𝑚-closed set 𝐹 

containing 𝑥 implies 𝐹⋂𝐴 ≠ 𝜙, this means 𝐴⋂𝐹/{𝑥} ≠ 𝜙. Then, 𝑥 ∈ 𝛼𝑚-𝑘𝑒𝑟𝑑𝑟(𝐴), so that 𝑥 ∈ 𝐴⋃𝛼𝑚-

𝑘𝑒𝑟𝑑𝑟(𝐴). Hence, 𝛼𝑚-𝑘𝑒𝑟(𝐴) ⊆ 𝐴⋃𝛼𝑚-𝑘𝑒𝑟𝑑𝑟(𝐴). Thus, 𝛼𝑚-𝑘𝑒𝑟(𝐴) = 𝐴⋃𝛼𝑚-𝑘𝑒𝑟𝑑𝑟(𝐴). 
 

Theorem 3.10: Let (𝑋, 𝜏) be a topological space and 𝐴 ⊆ 𝑋 and let 𝛼𝑚-𝑘𝑒𝑟𝑏𝑑(𝐴) be the set of all boundary 𝛼𝑚-

kernelled points of 𝐴, then 𝛼𝑚-𝑘𝑒𝑟(𝐴) = 𝐴⋃𝛼𝑚-𝑘𝑒𝑟𝑏𝑑(𝐴). 
 

Proof: Let 𝑥 ∈ 𝐴⋃𝛼𝑚-𝑘𝑒𝑟𝑏𝑑(𝐴) and if 𝑥 ∈ 𝛼𝑚-𝑘𝑒𝑟𝑏𝑑(𝐴), then for every 𝛼𝑚-closed set 𝐹 intersects 𝐴, 

therefore 𝑥 ∈ 𝛼𝑚-𝑘𝑒𝑟({𝑥}). Hence, 𝛼𝑚-𝑘𝑒𝑟𝑏𝑑(𝐴) ⊆ 𝛼𝑚-𝑘𝑒𝑟(𝐴), it follows that 𝐴⋃𝛼𝑚-𝑘𝑒𝑟𝑏𝑑(𝐴) ⊆ 𝛼𝑚-

𝑘𝑒𝑟(𝐴). To demonstrate the reverse inclusion, we consider 𝑥 be a point of 𝛼𝑚-𝑘𝑒𝑟(𝐴). If 𝑥 ∈ 𝐴, then 𝑥 ∈
𝐴⋃𝛼𝑚-𝑘𝑒𝑟𝑏𝑑(𝐴). Suppose that 𝑥 ∉ 𝐴, implies 𝑥 ∈ 𝐴𝑐. Since 𝑥 ∈ 𝛼𝑚-𝑘𝑒𝑟(𝐴), then for every 𝛼𝑚-closed set 𝐹 

containing 𝑥 implies 𝐹⋂𝐴 ≠ 𝜙 and 𝐹⋂𝐴𝑐 ≠ 𝜙. Then 𝑥 ∈ 𝛼𝑚-𝑘𝑒𝑟𝑏𝑑(𝐴), so that 𝑥 ∈ 𝐴⋃𝛼𝑚-𝑘𝑒𝑟𝑏𝑑(𝐴). 

Hence, 𝛼𝑚-𝑘𝑒𝑟(𝐴) ⊆ 𝐴⋃𝛼𝑚-𝑘𝑒𝑟𝑏𝑑(𝐴). Thus, 𝛼𝑚-𝑘𝑒𝑟(𝐴) = 𝐴⋃𝛼𝑚-𝑘𝑒𝑟𝑏𝑑(𝐴). 
 

Definition 3.11: In a topological space (𝑋, 𝜏), a set 𝐴 is said to be weakly ultra 𝛼𝑚-separated from B if there 

exists 𝛼𝑚-open set G such that 𝐺⋂𝐵 = 𝜙 or 𝐴⋂𝛼𝑚-𝑐𝑙(𝐵) = 𝜙.              
 

By definition (3.11), we have the following: For every two distinct points 𝑥 and 𝑦 of 𝑋, 

(i) 𝛼𝑚-𝑐𝑙({𝑥}) = {𝑥 ∶ {𝑦} is not weakly ultra 𝛼𝑚-separated from {𝑥}}. 

(ii) 𝛼𝑚-𝑘𝑒𝑟({𝑥}) = {𝑦 ∶ {𝑥} is not weakly ultra 𝛼𝑚-separated from {𝑦}}. 
 

Definition 3.12: A topological space (𝑋, 𝜏) is called 𝛼𝑚-𝑅0-space if for each 𝛼𝑚-open set 𝑈 and 𝑥 ∈ 𝑈, then 

𝛼𝑚-𝑐𝑙({𝑥}) ⊆ 𝑈. 
 

Definition 3.13: A topological space (𝑋, 𝜏) is called 𝛼𝑚-𝑅1-space if for each two distinct points 𝑥 and 𝑦 of 𝑋 

with 𝛼𝑚-𝑐𝑙({𝑥}) ≠ 𝛼𝑚-𝑐𝑙({𝑦}), there exist disjoint 𝛼𝑚-open sets 𝑈, 𝑉 such that 𝛼𝑚-𝑐𝑙({𝑥}) ⊆ 𝑈 and 𝛼𝑚-

𝑐𝑙({𝑦}) ⊆ 𝑉. 
 

Theorem 3.14: Let (𝑋, 𝜏) be a topological space. Then (𝑋, 𝜏) is 𝛼𝑚-𝑅0-space if and only if 𝛼𝑚-𝑐𝑙({𝑥}) = 𝛼𝑚-

𝑘𝑒𝑟({𝑥}), for each 𝑥 ∈ 𝑋. 
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Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑅0-space. If 𝛼𝑚-𝑐𝑙({𝑥}) ≠ 𝛼𝑚-𝑘𝑒𝑟({𝑥}), for each 𝑥 ∈ 𝑋, then there exist another 

point 𝑦 ≠ 𝑥 such that 𝑦 ∈ 𝛼𝑚-𝑐𝑙({𝑥}) and 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑥}) this means there exist an 𝑈𝑥  𝛼𝑚-open set, 𝑦 ∉ 𝑈𝑥 

implies 𝛼𝑚-𝑐𝑙({𝑥}) ⊈ 𝑈𝑥 this contradiction. Thus 𝛼𝑚-𝑐𝑙({𝑥}) = 𝛼𝑚-𝑘𝑒𝑟({𝑥}). 

Conversely, let 𝛼𝑚-𝑐𝑙({𝑥}) = 𝛼𝑚-𝑘𝑒𝑟({𝑥}), for each 𝛼𝑚-open set 𝑈, 𝑥 ∈ 𝑈, then 𝛼𝑚-𝑘𝑒𝑟({𝑥}) = 𝛼𝑚-𝑐𝑙({𝑥}) ⊆
𝑈 [by definition (3.1)]. Hence by definition (3.12), (𝑋, 𝜏) is 𝛼𝑚-𝑅0-space.  
 

Theorem 3.15: A topological space (𝑋, 𝜏) is 𝛼𝑚-𝑅0-space if and only if for each 𝐹 𝛼𝑚-closed set and 𝑥 ∈ 𝐹, 

then 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ⊆ 𝐹. 
 

Proof: Let for each 𝐹 𝛼𝑚-closed set and 𝑥 ∈ 𝐹, then 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ⊆ 𝐹 and let 𝑈 be 𝛼𝑚-open set, 𝑥 ∈ 𝑈 then for 

each 𝑦 ∉ 𝑈 implies 𝑦 ∈ 𝑈𝑐  is 𝛼𝑚-closed set implies 𝛼𝑚-𝑘𝑒𝑟({𝑦}) ⊆ 𝑈𝑐[by assumption]. Therefore 𝑥 ∉ 𝛼𝑚-

𝑘𝑒𝑟({𝑦}) implies 𝑦 ∉ 𝛼𝑚-𝑐𝑙({𝑥}) [by lemma (3.3)]. So 𝛼𝑚-𝑐𝑙({𝑥}) ⊆ 𝑈. Thus (𝑋, 𝜏) is 𝛼𝑚-𝑅0-space. 

Conversely, let (𝑋, 𝜏) be an 𝛼𝑚-𝑅0-space and 𝐹 be 𝛼𝑚-closed set and 𝑥 ∈ 𝐹. Then for each 𝑦 ∉ 𝐹 implies 𝑦 ∈ 𝐹𝑐 
is 𝛼𝑚-open set, then 𝛼𝑚-𝑐𝑙({𝑦}) ⊆ 𝐹𝑐[since (𝑋, 𝜏) is 𝛼𝑚-𝑅0-space], so 𝛼𝑚-𝑘𝑒𝑟({𝑥}) = 𝛼𝑚-𝑐𝑙({𝑥}). Thus, 𝛼𝑚-

𝑘𝑒𝑟({𝑥}) ⊆ 𝐹. 
 

Corollary 3.16: A topological space (𝑋, 𝜏) is 𝛼𝑚-𝑅0-space if and only if for each 𝑈 𝛼𝑚-open set and 𝑥 ∈ 𝑈, 

then 𝛼𝑚-𝑐𝑙(𝛼𝑚-𝑘𝑒𝑟({𝑥})) ⊆ 𝑈.  
 

Proof: Clearly. 
 

Theorem 3.17: Let (𝑋, 𝜏) be a topological 𝛼𝑚-𝑅0-space. Then the following statements are equivalent 

(i) Every 𝛼𝑚-kernelled point of {𝑥} is an 𝛼𝑚-adherent point of {𝑥}. 

(ii) Every 𝛼𝑚-adherent point of {𝑥} is an 𝛼𝑚-kernelled point of {𝑥}. 
 

Proof: (i) Let (𝑋, 𝜏) be an 𝛼𝑚-𝑅0-space. Then, for each 𝑥 ∈ 𝑋, 𝛼𝑚-𝑐𝑙({𝑥}) = 𝛼𝑚-𝑘𝑒𝑟({𝑥}) [by theorem (3.14)]. 

Thus, every 𝛼𝑚-kernelled point of {𝑥} is an 𝛼𝑚-adherent point of {𝑥}.      

Conversely, let every 𝛼𝑚-kernelled point of {𝑥} is an 𝛼𝑚-adherent point of {𝑥} and let 𝐹 be 𝛼𝑚-closed set, 

𝑥 ∈ 𝐹. Then 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ⊆ 𝛼𝑚-𝑐𝑙({𝑥}), for each 𝑥 ∈ 𝑋. Since 𝛼𝑚-𝑐𝑙({𝑥}) = ⋂{𝐹: 𝐹 ∈ 𝛼𝑚-𝐶(𝑋), 𝑥 ∈ 𝐹}, 

implies 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ⊆ 𝐹. Hence by theorem (3.15), (𝑋, 𝜏) is an 𝛼𝑚-𝑅0-space. 

(ii) Let (𝑋, 𝜏) be an 𝛼𝑚-𝑅0-space. Then, for each 𝑥 ∈ 𝑋, 𝛼𝑚-𝑐𝑙({𝑥}) = 𝛼𝑚-𝑘𝑒𝑟({𝑥}) [by theorem (3.14)]. Thus, 

every 𝛼𝑚-adherent point of {𝑥} is an 𝛼𝑚- kernelled point of {𝑥}.      

Conversely, let every 𝛼𝑚-adherent point of {𝑥} is an 𝛼𝑚-kernelled point of {𝑥} and let 𝑈 be 𝛼𝑚-open set 

and 𝑥 ∈ 𝑈. Then 𝛼𝑚-𝑐𝑙({𝑥}) ⊆ 𝛼𝑚-𝑘𝑒𝑟({𝑥}), for each 𝑥 ∈ 𝑋. Since 𝛼𝑚-𝑘𝑒𝑟({𝑥}) = ⋂{𝑈: 𝑈 ∈ 𝛼𝑚-𝑂(𝑋), 𝑥 ∈
𝑈}, implies 𝛼𝑚-𝑐𝑙({𝑥}) ⊆ 𝑈. Hence by definition (3.12), (𝑋, 𝜏) is an 𝛼𝑚-𝑅0-space.   
 

Theorem 3.18: Every 𝛼𝑚-𝑅1-space is 𝛼𝑚-𝑅0-space. 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑅1-space and let 𝑈 be 𝛼𝑚-open set, 𝑥 ∈ 𝑈, then for each 𝑦 ∉ 𝑈 implies 𝑦 ∈ 𝑈𝑐 is 

𝛼𝑚-closed set and 𝛼𝑚-𝑐𝑙({𝑦}) ⊆ 𝑈𝑐 implies 𝛼𝑚-𝑐𝑙({𝑥}) ≠ 𝛼𝑚-𝑐𝑙({𝑦}). Hence by definition (3.13), 𝛼𝑚-

𝑐𝑙({𝑥}) ⊆ 𝑈. Thus (𝑋, 𝜏) is 𝛼𝑚-𝑅0-space. 
 

Theorem 3.19: A topological space (𝑋, 𝜏) is 𝛼𝑚-𝑅1-space if and only if for each 𝑥 ≠ 𝑦 ∈ 𝑋 with 𝛼𝑚-𝑘𝑒𝑟({𝑥}) 
≠ 𝛼𝑚-𝑘𝑒𝑟({𝑦}), then there exist 𝛼𝑚-closed sets 𝐺1, 𝐺2 such that 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ⊆ 𝐺1, 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝐺2 = 𝜙 and 
𝛼𝑚-𝑘𝑒𝑟({𝑦}) ⊆ 𝐺2, 𝛼𝑚-𝑘𝑒𝑟({𝑦})⋂𝐺1 = 𝜙 and  𝐺1⋃𝐺2 = 𝑋. 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑅1-space. Then for each 𝑥 ≠ 𝑦 ∈ 𝑋 with 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ≠ 𝛼𝑚-𝑘𝑒𝑟({𝑦}). Since every 
𝛼𝑚-𝑅1-space is 𝛼𝑚-𝑅0-space [by theorem (3.18)], and by theorem (3.14), 𝛼𝑚-𝑐𝑙({𝑥}) ≠ 𝛼𝑚-𝑐𝑙({𝑦}), then there 

exist 𝛼𝑚-open sets 𝑈1,𝑈2 such that 𝛼𝑚-𝑐𝑙({𝑥}) ⊆ 𝑈1 and 𝛼𝑚-𝑐𝑙({𝑦}) ⊆ 𝑈2 and 𝑈1⋂𝑈2 = 𝜙 [since (𝑋, 𝜏) is 𝛼𝑚-

𝑅1-space], then 𝑈1
𝑐  and 𝑈2

𝑐  are 𝛼𝑚-closed sets such that 𝑈1
𝑐⋃𝑈2

𝑐 = 𝑋. Put 𝐺1= 𝑈1
𝑐  and 𝐺2 = 𝑈2

𝑐. Thus 
𝑥 ∈ 𝑈1 ⊆ 𝐺2 and 𝑦 ∈ 𝑈2 ⊆ 𝐺1 so that 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ⊆ 𝑈1 ⊆ 𝐺2 and 𝛼𝑚-𝑘𝑒𝑟({𝑦}) ⊆ 𝑈2 ⊆ 𝐺1. 
Conversely, let for each 𝑥 ≠ 𝑦 ∈ 𝑋 with 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ≠ 𝛼𝑚-𝑘𝑒𝑟({𝑦}), there exist 𝛼𝑚-closed sets 𝐺1, 𝐺2 such 

that 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ⊆ 𝐺1, 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝐺2 = 𝜙 and 𝛼𝑚-𝑘𝑒𝑟({𝑦}) ⊆ 𝐺2, 𝛼𝑚-𝑘𝑒𝑟({𝑦})⋂𝐺1 = 𝜙 and 𝐺1⋃𝐺2 =
𝑋, then  𝐺1

𝑐  and 𝐺2
𝑐  are 𝛼𝑚-open sets such that 𝐺1

𝑐⋂ 𝐺2
𝑐 = 𝜙. Put 𝐺1

𝑐 = 𝑈2 and 𝐺2
𝑐 = 𝑈1. Thus, 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ⊆ 𝑈1 

and 𝛼𝑚-𝑘𝑒𝑟({𝑦}) ⊆ 𝑈2 and 𝑈1⋂𝑈2 = 𝜙, so that 𝑥 ∈ 𝑈1 and 𝑦 ∈ 𝑈2 implies 𝑥 ∉ 𝛼𝑚-𝑐𝑙({𝑦}) and 𝑦 ∉ 𝛼𝑚-

𝑐𝑙({𝑥}), then 𝛼𝑚-𝑐𝑙({𝑥}) ⊆ 𝑈1 and 𝛼𝑚-𝑐𝑙({𝑦}) ⊆ 𝑈2. Thus, (𝑋, 𝜏) is 𝛼𝑚-𝑅1-space. 
 

Corollary 3.20: A topological space (𝑋, 𝜏) is 𝛼𝑚-𝑅1-space if and only if for each 𝑥 ≠ 𝑦 ∈ 𝑋 with 𝛼𝑚-𝑐𝑙({𝑥}) ≠
𝛼𝑚-𝑐𝑙({𝑦}) there exist disjoint 𝛼𝑚-open sets 𝑈, 𝑉 such that 𝛼𝑚-𝑐𝑙(𝛼𝑚-𝑘𝑒𝑟({𝑥})) ⊆ 𝑈 and 𝛼𝑚-𝑐𝑙(𝛼𝑚-

𝑘𝑒𝑟({𝑦})) ⊆ 𝑉. 
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Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑅1-space and let 𝑥 ≠ 𝑦 ∈ 𝑋 with 𝛼𝑚-𝑐𝑙({𝑥}) ≠ 𝛼𝑚-𝑐𝑙({𝑦}), then there exist disjoint 

𝛼𝑚-open sets 𝑈, 𝑉 such that 𝛼𝑚-𝑐𝑙({𝑥}) ⊆ 𝑈 and 𝛼𝑚-𝑐𝑙({𝑦}) ⊆ 𝑉. Also (𝑋, 𝜏) is 𝛼𝑚-𝑅0-space [by theorem 

(3.18)] implies for each 𝑥 ∈ 𝑋, then 𝛼𝑚-𝑐𝑙({𝑥}) = 𝛼𝑚-𝑘𝑒𝑟({𝑥}) [by theorem (3.14)], but 𝛼𝑚-𝑐𝑙({𝑥}) = 𝛼𝑚-

𝑐𝑙(𝛼𝑚-𝑐𝑙({𝑥})) = 𝛼𝑚-𝑐𝑙(𝛼𝑚-𝑘𝑒𝑟({𝑥})). Thus 𝛼𝑚-𝑐𝑙(𝛼𝑚-𝑘𝑒𝑟({𝑥})) ⊆ 𝑈 and 𝛼𝑚-𝑐𝑙(𝛼𝑚-𝑘𝑒𝑟({𝑦})) ⊆ 𝑉. 

Conversely, let for each 𝑥 ≠ 𝑦 ∈ 𝑋 with 𝛼𝑚-𝑐𝑙({𝑥}) ≠  𝛼𝑚-𝑐𝑙({𝑦}) there exist disjoint 𝛼𝑚-open sets U,V such 

that 𝛼𝑚-𝑐𝑙(𝛼𝑚-𝑘𝑒𝑟({𝑥})) ⊆ 𝑈 and 𝛼𝑚-𝑐𝑙(𝛼𝑚-𝑘𝑒𝑟({𝑦})) ⊆ 𝑉. Since {𝑥} ⊆ 𝛼𝑚-𝑘𝑒𝑟({𝑥}), then 𝛼𝑚-𝑐𝑙({𝑥}) ⊆
𝛼𝑚-𝑐𝑙(𝛼𝑚-𝑘𝑒𝑟({𝑥})) for each 𝑥 ∈ 𝑋. So we get 𝛼𝑚-𝑐𝑙({𝑥}) ⊆ 𝑈 and 𝛼𝑚-𝑐𝑙({𝑦}) ⊆ 𝑉. Thus, (𝑋, 𝜏) is 𝛼𝑚-𝑅1-

space. 

 

4. 𝜶𝒎-𝑻𝒊-Spaces, 𝒊 = 𝟎, 𝟏, 𝟐 

Definition 4.1: Let (𝑋, 𝜏) be a topological space. Then 𝑋 is called: 

(i) 𝛼𝑚-𝑇0-space iff for each pair of distinct points in 𝑋, there exists 𝛼𝑚-open set in 𝑋 containing one and not the 

other.  

(ii) 𝛼𝑚-𝑇1-space iff for each pair of distinct points 𝑥 and 𝑦 of 𝑋, there exists 𝛼𝑚-open sets 𝐺, 𝐻 containing 

𝑥 and 𝑦 respectively such that 𝑦 ∉ 𝐺 and 𝑥 ∉ 𝐻. 

(iii) 𝛼𝑚-𝑇2-space iff for each pair of distinct points 𝑥  and 𝑦 of 𝑋, there exist disjoint 𝛼𝑚-open sets 𝐺, 𝐻 

in 𝑋 such that 𝑥 ∈ 𝐺 and 𝑦 ∈ 𝐻.  
 

Remark 4.2: Every 𝛼𝑚-𝑇𝑖-space is 𝛼𝑚-𝑇𝑖−1-space, 𝑖 = 1,2. 
 

Proof: Clearly. 
 

Theorem 4.3: A topological space (𝑋, 𝜏) is 𝛼𝑚-𝑇0-space if and only if either 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑥}) or 𝑥 ∉ 𝛼𝑚-

𝑘𝑒𝑟({𝑦}), for each 𝑥 ≠ 𝑦 ∈ 𝑋. 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇0-space then for each 𝑥 ≠ 𝑦 ∈ 𝑋, there exists 𝛼𝑚-open set 𝐺 such that 𝑥 ∈ 𝐺, 𝑦 ∉ 𝐺 
or 𝑥 ∉ 𝐺, 𝑦 ∈ 𝐺. Thus either 𝑥 ∈ 𝐺, 𝑦 ∉ 𝐺 implies 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑥}) or 𝑥 ∉ 𝐺, 𝑦 ∈ 𝐺 implies 𝑥 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑦}). 
Conversely, let either 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑥}) or 𝑥 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑦}), for each 𝑥 ≠ 𝑦 ∈ 𝑋. Then there exists 𝛼𝑚-open set 
𝐺 such that 𝑥 ∈ 𝐺, 𝑦 ∉ 𝐺 or 𝑥 ∉ 𝐺, 𝑦 ∈ 𝐺. Thus (𝑋, 𝜏) is 𝛼𝑚-𝑇0-space. 
 

Theorem 4.4: A topological space (𝑋, 𝜏) is 𝛼𝑚-𝑇0-space if and only if either 𝛼𝑚-𝑘𝑒𝑟({𝑥}) is weakly ultra 𝛼𝑚-

separated from {𝑦} or 𝛼𝑚-𝑘𝑒𝑟({𝑦}) is weakly ultra 𝛼𝑚-separated from {𝑥} for each 𝑥 ≠ 𝑦 ∈ 𝑋. 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇0-space then for each 𝑥 ≠ 𝑦 ∈ 𝑋, there exists 𝛼𝑚-open set G such that 𝑥 ∈ 𝐺, 𝑦 ∉ 𝐺 
or 𝑥 ∉ 𝐺, 𝑦 ∈ 𝐺. Now if 𝑥 ∈ 𝐺, 𝑦 ∉ 𝐺 implies 𝛼𝑚-𝑘𝑒𝑟({𝑥}) is weakly ultra 𝛼𝑚-separated from {𝑦}. Or if 𝑥 ∉ 𝐺, 
𝑦 ∈ 𝐺 implies 𝛼𝑚-𝑘𝑒𝑟({𝑦}) is weakly ultra 𝛼𝑚-separated from {𝑥}. 
Conversely, let either 𝛼𝑚-𝑘𝑒𝑟({𝑥}) be weakly ultra 𝛼𝑚-separated from {𝑦} or 𝛼𝑚-𝑘𝑒𝑟({𝑦}) be weakly ultra 𝛼𝑚-

separated from {𝑥}. Then there exists 𝛼𝑚-open set G such that 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ⊆ 𝐺 and 𝑦 ∉ 𝐺 or 𝛼𝑚-𝑘𝑒𝑟({𝑦}) ⊆
𝐺,

 
𝑥 ∉ 𝐺 implies 𝑥 ∈ 𝐺, 𝑦 ∉ 𝐺 or 𝑥 ∉ 𝐺, 𝑦 ∈ 𝐺. Thus, (𝑋, 𝜏) is 𝛼𝑚-𝑇0- space.  

 

Theorem 4.5: A topological space (𝑋, 𝜏) is 𝛼𝑚-𝑇0-space if and only if for each 𝑥 ≠ 𝑦 ∈ 𝑋, either 𝑥 is not 𝛼𝑚-

kernelled point of {𝑦} or 𝑦 is not 𝛼𝑚-kernelled point of {𝑥}. 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇0-space. Then for each 𝑥 ≠ 𝑦 ∈ 𝑋 there exists an 𝛼𝑚-open set 𝑈 such that 𝑥 ∈ 𝑈, 

𝑦 ∉ 𝑈 (say), implies 𝑦 ∈ 𝑈𝑐. Hence 𝑈𝑐 is 𝛼𝑚-closed, then 𝑦 is not 𝛼𝑚-kernelled point of {𝑥} [by definition 

(3.6)(ii)]. Thus either 𝑥  is not 𝛼𝑚-kernelled point of {𝑦} or 𝑦 is not 𝛼𝑚-kernelled point of {𝑥}. 

Conversely, Let for each 𝑥 ≠ 𝑦 ∈ 𝑋, either 𝑥  is not 𝛼𝑚-kernelled point of {𝑦} or 𝑦 is not 𝛼𝑚-kernelled point of 

{𝑥}. Then there exist 𝛼𝑚-closed set 𝐹 such that 𝑥 ∈ 𝐹 , 𝐹⋂{𝑦} = 𝜙 or 𝑦 ∈ 𝐹 , 𝐹⋂{𝑥} = 𝜙, implies 𝑥 ∉ 𝐹𝑐  , 𝑦 ∈
𝐹𝑐 or 𝑥 ∈ 𝐹𝑐  , 𝑦 ∉ 𝐹𝑐. Hence 𝐹𝑐 is an 𝛼𝑚-open set. Thus, (𝑋, 𝜏) is 𝛼𝑚-𝑇0-space. 
 

Theorem 4.6: A topological space (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space if and only if for each 𝑥 ≠ 𝑦 ∈ 𝑋, 𝛼𝑚-𝑘𝑒𝑟({𝑥}) is 

weakly ultra 𝛼𝑚-separated from {𝑦} and 𝛼𝑚-𝑘𝑒𝑟({𝑦}) is weakly ultra 𝛼𝑚-separated from {𝑥}. 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇1-space then for each 𝑥 ≠ 𝑦 ∈ 𝑋, there exist 𝛼𝑚-open sets 𝑈, 𝑉 such that 𝑥 ∈
𝑈, 𝑦 ∉ 𝑈 and 𝑥 ∉ 𝑉, 𝑦 ∈ 𝑉. Implies 𝛼𝑚-𝑘𝑒𝑟({𝑥}) is weakly ultra 𝛼𝑚-separated from {𝑦} and 𝛼𝑚-𝑘𝑒𝑟({𝑦}) is 

weakly ultra 𝛼𝑚-separated from {𝑥}. 
Conversely, let 𝛼𝑚-𝑘𝑒𝑟({𝑥}) be weakly ultra 𝛼𝑚-separated from {𝑦} and 𝛼𝑚-𝑘𝑒𝑟({𝑦}) be weakly ultra 𝛼𝑚-

separated from {𝑥}. Then there exist 𝛼𝑚-open sets 𝑈, 𝑉 such that 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ⊆ 𝑈, 𝑦 ∉ 𝑈 and 𝛼𝑚-𝑘𝑒𝑟({𝑦}) ⊆
𝑉, 𝑥 ∉ 𝑉 implies 𝑥 ∈ 𝑈, 𝑦 ∉ 𝑈 and 𝑥 ∉ 𝑉, 𝑦 ∈ 𝑉. Thus, (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space. 
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Theorem 4.7: A topological space (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space if and only if for each 𝑥 ∈ 𝑋, 𝛼𝑚-𝑘𝑒𝑟({𝑥}) = {𝑥}. 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇1-space and let 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ≠ {𝑥}. Then 𝛼𝑚-𝑘𝑒𝑟({𝑥}) contains another point 

distinct from 𝑥 say 𝑦. So 𝑦 ∈ 𝛼𝑚-𝑘𝑒𝑟({𝑥}) implies 𝛼𝑚-𝑘𝑒𝑟({𝑥}) is not weakly ultra 𝛼𝑚-separated from {𝑦}. 
Hence by theorem (4.6), (𝑋, 𝜏) is not 𝛼𝑚-𝑇1-space this is contradiction. Thus 𝛼𝑚-𝑘𝑒𝑟({𝑥}) = {𝑥}.  
Conversely, let 𝛼𝑚-𝑘𝑒𝑟({𝑥}) = {𝑥}, for each 𝑥 ∈ 𝑋 and let (𝑋, 𝜏) be not 𝛼𝑚-𝑇1-space. Then by theorem (4.6), 

𝛼𝑚-𝑘𝑒𝑟({𝑥}) is not weakly ultra 𝛼𝑚-separated from {𝑦}, this means that for every 𝛼𝑚-open set 𝐺 contains 𝛼𝑚-

𝑘𝑒𝑟({𝑥}) then 𝑦 ∈ 𝐺 implies 𝑦 ∈ ⋂{𝐺 ∈ 𝛼𝑚-𝑂(𝑋) : 𝑥 ∈ 𝐺} implies 𝑦 ∈ 𝛼𝑚-𝑘𝑒𝑟({𝑥}), this is contradiction. 

Thus, (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space.  
 

Theorem 4.8: A topological space (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space if and only if 𝛼𝑚-𝑘𝑒𝑟𝑑𝑟({𝑥}) = 𝜙, for each 𝑥 ∈ 𝑋. 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇1-space. Then for each 𝑥 ∈ 𝑋,  𝛼𝑚-𝑘𝑒𝑟({𝑥}) = {𝑥} [by theorem (4.6)]. Since 𝛼𝑚-

𝑘𝑒𝑟𝑑𝑟({𝑥}) = 𝛼𝑚-𝑘𝑒𝑟({𝑥}) − {𝑥}. Thus 𝛼𝑚-𝑘𝑒𝑟𝑑𝑟({𝑥}) = 𝜙. 

Conversely, let 𝛼𝑚-𝑘𝑒𝑟𝑑𝑟({𝑥}) = 𝜙. By theorem (3.9), 𝛼𝑚-𝑘𝑒𝑟({𝑥}) = {𝑥}⋃𝛼𝑚-𝑘𝑒𝑟𝑑𝑟({𝑥}), implies 𝛼𝑚-

𝑘𝑒𝑟({𝑥}) = {𝑥}. Hence by theorem (4.7), (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space. 
 

Theorem 4.9: A topological space (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space if and only if for each 𝑥 ≠ 𝑦 ∈ 𝑋, 𝑥 is not 𝛼𝑚-

kernelled point of {𝑦} and 𝑦 is not 𝛼𝑚-kernelled point of {𝑥}. 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇1-space. Then for each 𝑥 ≠ 𝑦 ∈ 𝑋, there exist 𝛼𝑚-open sets 𝑈, 𝑉 such that 𝑥 ∈ 𝑈, 

𝑦 ∉ 𝑈 and 𝑦 ∈ 𝑉, 𝑥 ∉ 𝑉 implies  𝑥 ∈ 𝑉𝑐, {𝑦}⋂𝑉𝑐 = 𝜙 and 𝑦 ∈ 𝑈𝑐 ,  {𝑥}⋂𝑈𝑐 = 𝜙. Hence, 𝑈𝑐and 𝑉𝑐 are 𝛼𝑚-

closed sets. Thus 𝑥 is not 𝛼𝑚-kernelled point of {𝑦} and 𝑦 is not 𝛼𝑚-kernelled point of {𝑥}. 

Conversely, let for each 𝑥 ≠ 𝑦 ∈ 𝑋, 𝑥 is not 𝛼𝑚-kernelled point of {𝑦} and 𝑦 is not 𝛼𝑚-kernelled point of {𝑥}. 

Then there exist 𝛼𝑚-closed sets 𝐹1, 𝐹2 such that 𝑥 ∈ 𝐹1 , 𝐹1⋂{𝑦} = 𝜙 and 𝑦 ∈ 𝐹2,  𝐹2⋂{𝑥} = 𝜙, implies 𝑥 ∈
𝐹2

𝑐  , 𝑦 ∉ 𝐹2
𝑐  and 𝑦 ∈ 𝐹1

𝑐  , 𝑥 ∉ 𝐹1
𝑐. Hence 𝐹1

𝑐  and 𝐹2
𝑐 are 𝛼𝑚-open sets. Thus, (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space.  

 

Theorem 4.10: A topological space (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space if and only if for each 𝑥 ≠ 𝑦 ∈ 𝑋, 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑥}) 
and 𝑥 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑦}). 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇1-space then for each 𝑥 ≠ 𝑦 ∈ 𝑋, there exists 𝛼𝑚-open sets 𝑈, 𝑉 such that 𝑥 ∈ 𝑈, 
𝑦 ∉ 𝑈 and 𝑦 ∈ 𝑉, 𝑥 ∉ 𝑉. Implies 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑥}) and 𝑥 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑦}). 
Conversely, let 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑥}) and 𝑥 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑦}), for each 𝑥 ≠ 𝑦 ∈ 𝑋. Then there exists 𝛼𝑚-open sets 
𝑈, 𝑉 such that 𝑥 ∈ 𝑈, 𝑦 ∉ 𝑈 and 𝑦 ∈ 𝑉, 𝑥 ∉ 𝑉. Thus, (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space. 
 

Theorem 4.11: A topological space (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space if and only if for each 𝑥 ≠ 𝑦 ∈ 𝑋 implies 𝛼𝑚-

𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦}) = 𝜙. 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇1-space. Then 𝛼𝑚-𝑘𝑒𝑟({𝑥}) = {𝑥} and 𝛼𝑚-𝑘𝑒𝑟({𝑦}) = {𝑦} [by theorem (4.7)]. 

Thus, 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦}) = 𝜙.  

Conversely, let for each 𝑥 ≠ 𝑦 ∈ 𝑋 implies 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦})  = 𝜙 and let (𝑋, 𝜏) be not 𝛼𝑚-𝑇1-space 

then for each 𝑥 ≠ 𝑦 ∈ 𝑋 implies 𝑦 ∈ 𝛼𝑚-𝑘𝑒𝑟({𝑥}) or 𝑥 ∈ 𝛼𝑚-𝑘𝑒𝑟({𝑦}) [by theorem (4.10)], then 𝛼𝑚-

𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦}) ≠ 𝜙 this is contradiction. Thus, (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space. 
 

Theorem 4.12: A topological space (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space if and only if (𝑋, 𝜏) is 𝛼𝑚-𝑇0-space and 𝛼𝑚-𝑅0-space. 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇1-space and let 𝑥 ∈ 𝑈 be 𝛼𝑚-open set, then for each 𝑥 ≠ 𝑦 ∈ 𝑋, 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-

𝑘𝑒𝑟({𝑦})  = 𝜙 [by theorem (4.11)] implies 𝑥 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑦}) and 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑥}) this means 𝛼𝑚-𝑐𝑙({𝑥}) =
{𝑥}, hence 𝛼𝑚-𝑐𝑙({𝑥}) ⊆ 𝑈. Thus, (𝑋, 𝜏) is 𝛼𝑚-𝑅0-space. 
Conversely, let (𝑋, 𝜏) be an 𝛼𝑚-𝑇0-space and 𝛼𝑚-𝑅0-space, then for each 𝑥 ≠ 𝑦 ∈ 𝑋 there exists 𝛼𝑚-open set 𝑈 
such that 𝑥 ∈ 𝑈, 𝑦 ∉ 𝑈 or 𝑥 ∉ 𝑈, 𝑦 ∈ 𝑈. Say 𝑥 ∈ 𝑈, 𝑦 ∉ 𝑈 since (𝑋, 𝜏) is 𝛼𝑚-𝑅0-space, then 𝛼𝑚-𝑐𝑙({𝑥}) ⊆ 𝑈, 

this means there exists 𝛼𝑚-open set 𝑉 such that 𝑦 ∈ 𝑉, 𝑥 ∉ 𝑉 . Thus, (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space. 
 

Theorem 4.13: A topological space (𝑋, 𝜏) is 𝛼𝑚-𝑇2-space if and only if 

(i) (𝑋, 𝜏) is 𝛼𝑚-𝑇0-space and 𝛼𝑚-𝑅1-space. 
(ii) (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space and 𝛼𝑚-𝑅1-space. 
 

Proof: (i) Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇2-space then it is 𝛼𝑚-𝑇0-space. Now since (𝑋, 𝜏) is 𝛼𝑚-𝑇2-space then for each 
𝑥 ≠ 𝑦 ∈ 𝑋, there exist disjoint 𝛼𝑚-open sets 𝑈, 𝑉 such that 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉 implies 𝑥 ∉ 𝛼𝑚-𝑐𝑙({𝑦}) and 
𝑦 ∉ 𝛼𝑚-𝑐𝑙({𝑥}), therefore 𝛼𝑚-𝑐𝑙({𝑥}) = {𝑥} ⊆ 𝑈 and 𝛼𝑚-𝑐𝑙({𝑦}) = {𝑦} ⊆ 𝑉. Thus, (𝑋, 𝜏) is 𝛼𝑚-𝑅1-space.  
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Conversely, let (𝑋, 𝜏) be an 𝛼𝑚-𝑇0-space and 𝛼𝑚-𝑅1-space, then for each 𝑥 ≠ 𝑦 ∈ 𝑋, there exists 𝛼𝑚-open set 𝑈 
such that 𝑥 ∈ 𝑈, 𝑦 ∉ 𝑈 or 𝑦 ∈ 𝑈, 𝑥 ∉ 𝑈, implies 𝛼𝑚-𝑐𝑙({𝑥}) ≠ 𝛼𝑚-𝑐𝑙({𝑦}), since (𝑋, 𝜏) is 𝛼𝑚-𝑅1-space [by 

assumption], then there exist disjoint 𝛼𝑚-open sets 𝐺, 𝐻 such that 𝑥 ∈ 𝐺 and 𝑦 ∈ 𝐻 [by definition (3.13)]. Thus, 
(𝑋, 𝜏) is 𝛼𝑚-𝑇2-space. 

(ii) By the same way of part (i) 𝛼𝑚-𝑇2-space is 𝛼𝑚-𝑇1-space and 𝛼𝑚-𝑅1-space. 

Conversely, let (𝑋, 𝜏) be an 𝛼𝑚-𝑇1-space and 𝛼𝑚-𝑅1-space, then for each 𝑥 ≠ 𝑦 ∈ 𝑋, there exist 𝛼𝑚-open sets 
𝑈, 𝑉 such that 𝑥 ∈ 𝑈, 𝑦 ∉ 𝑈 and 𝑦 ∈ 𝑉, 𝑥 ∉ 𝑉 implies 𝛼𝑚-𝑐𝑙({𝑥}) ≠ 𝛼𝑚-𝑐𝑙({𝑦}), since (𝑋, 𝜏) is 𝛼𝑚-𝑅1-space, 

then there exist disjoint 𝛼𝑚-open sets 𝐺, 𝐻 such that 𝑥 ∈ 𝐺 and 𝑦 ∈ 𝐻. Thus, (𝑋, 𝜏) is 𝛼𝑚-𝑇2-space. 
 

Corollary 4.14: A topological 𝛼𝑚-𝑇0-space is 𝛼𝑚-𝑇2-space if and only if for each 𝑥 ≠ 𝑦 ∈ 𝑋 with 𝛼𝑚-

𝑘𝑒𝑟({𝑥}) ≠ 𝛼𝑚-𝑘𝑒𝑟({𝑦}) then there exist 𝛼𝑚-closed sets 𝐺1,𝐺2 such that 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ⊆ 𝐺1, 𝛼𝑚-

𝑘𝑒𝑟({𝑥})⋂𝐺2 = 𝜙 and 𝛼𝑚-𝑘𝑒𝑟({𝑦}) ⊆ 𝐺2, 𝛼𝑚-𝑘𝑒𝑟({𝑦})⋂𝐺1 = 𝜙 and  𝐺1⋃𝐺2 = 𝑋. 
 

Proof: By theorem (3.19) and theorem (4.13). 
 

Corollary 4.15: A topological 𝛼𝑚-𝑇1-space is 𝛼𝑚-𝑇2-space if and only if one of the following conditions holds: 

(i) for each 𝑥 ≠ 𝑦 ∈ 𝑋 with 𝛼𝑚-𝑐𝑙({𝑥}) ≠ 𝛼𝑚-𝑐𝑙({𝑦}), then there exist 𝛼𝑚-open sets 𝑈, 𝑉 such that 𝛼𝑚-𝑐𝑙(𝛼𝑚-

𝑘𝑒𝑟({𝑥})) ⊆ 𝑈 and 𝛼𝑚-𝑐𝑙(𝛼𝑚-𝑘𝑒𝑟({𝑦})) ⊆ 𝑉. 
(ii) for each 𝑥 ≠ 𝑦 ∈ 𝑋 with 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ≠ 𝛼𝑚-𝑘𝑒𝑟({𝑦}), then there exist 𝛼𝑚-closed sets 𝐺1,𝐺2 such that 𝛼𝑚-

𝑘𝑒𝑟({𝑥}) ⊆ 𝐺1, 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝐺2 = 𝜙 and 𝛼𝑚-𝑘𝑒𝑟({𝑦}) ⊆ 𝐺2, 𝛼𝑚-𝑘𝑒𝑟({𝑦})⋂𝐺1 = 𝜙 and  𝐺1⋃𝐺2 = 𝑋. 
 

Proof: (i) By corollary (3.20) and theorem (4.13). 

(ii) By theorem (3.19) and theorem (4.13). 
 

Theorem 4.16: A topological 𝛼𝑚-𝑅1-space is 𝛼𝑚-𝑇2-space if and only if one of the following conditions holds: 

(i) for each 𝑥 ∈ 𝑋, 𝛼𝑚-𝑘𝑒𝑟({𝑥}) = {𝑥}. 
(ii) for each 𝑥 ≠ 𝑦 ∈ 𝑋, 𝛼𝑚-𝑘𝑒𝑟({𝑥})  ≠ 𝛼𝑚-𝑘𝑒𝑟({𝑦}) implies 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦}) = 𝜙. 
(iii) for each 𝑥 ≠ 𝑦 ∈ 𝑋, either 𝑥 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑦}) or 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑥}). 
(iv) for each 𝑥 ≠ 𝑦 ∈ 𝑋 then 𝑥 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑦}) and 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑥}). 
 

Proof: (i) Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇2-space. Then (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space and 𝛼𝑚-𝑅1-space [by theorem (4.13)]. 

Hence by theorem (4.7), 𝛼𝑚-𝑘𝑒𝑟({𝑥}) = {𝑥} for each 𝑥 ∈ 𝑋. 
Conversely, let for each 𝑥 ∈ 𝑋, 𝛼𝑚-𝑘𝑒𝑟({𝑥}) = {𝑥}, then by theorem (4.7), (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space. Also (𝑋, 𝜏) is 

𝛼𝑚-𝑅1-space by assumption. Hence by theorem (4.13), (𝑋, 𝜏) is 𝛼𝑚-𝑇2-space. 

(ii) Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇2-space. Then (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space [by remark (4.2)]. Hence by theorem (4.11), 𝛼𝑚-

𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦}) = 𝜙 for each 𝑥 ≠ 𝑦 ∈ 𝑋. 
Conversely, assume that for each 𝑥 ≠ 𝑦 ∈ 𝑋, 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ≠ 𝛼𝑚-𝑘𝑒𝑟({𝑦}) implies 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ⋂𝛼𝑚-

𝑘𝑒𝑟({𝑦}) = 𝜙. So by theorem (4.11), (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space, also (𝑋, 𝜏) is 𝛼𝑚-𝑅1-space by assumption. Hence by 

theorem (4.13), (𝑋, 𝜏) is 𝛼𝑚-𝑇2-space. 

(iii) Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇2-space. Then (𝑋, 𝜏) is 𝛼𝑚-𝑇0-space [by remark (4.2)]. Hence by theorem (4.3), either 
𝑥 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑦}) or 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑥}) for each 𝑥 ≠ 𝑦 ∈ 𝑋. 

Conversely, assume that for each 𝑥 ≠ 𝑦 ∈ 𝑋, either 𝑥 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑦}) or 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑥}) for each 𝑥 ≠ 𝑦 ∈ 𝑋. 

So by theorem (4.3), (𝑋, 𝜏) is 𝛼𝑚-𝑇0-space, also (𝑋, 𝜏) is 𝛼𝑚-𝑅1-space by assumption. Thus (𝑋, 𝜏) is 𝛼𝑚-𝑇2-

space [by theorem (4.13)]. 
(iv) Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇2-space. Then (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space and 𝛼𝑚-𝑅1-space [by theorem (4.13)]. Hence by 

theorem (4.10), 𝑥 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑦}) and 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑥}). 
Conversely, let for each 𝑥 ≠ 𝑦 ∈ 𝑋 then 𝑥 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑦}) and 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑥}). Then by theorem (4.10), (𝑋, 𝜏) 

is 𝛼𝑚-𝑇1-space. Also (𝑋, 𝜏) is 𝛼𝑚-𝑅1-space by assumption. Hence by theorem (4.13), (𝑋, 𝜏) is 𝛼𝑚-𝑇2-space. 
 

Remark 4.17: Each 𝛼𝑚-separation axiom is defined as the conjunction of two weaker axioms: 𝛼𝑚-𝑇𝑖-space = 

𝛼𝑚-𝑅𝑖−1-space and 𝛼𝑚-𝑇𝑖−1-space = 𝛼𝑚-𝑅𝑖−1-space and 𝛼𝑚-𝑇0-space, 𝑖 = 1,2. 
 

Definition 4.18: Let (𝑋, 𝜏) be a topological space. Then 𝑋 is called: 

(i) 𝛼𝑚-regular space (𝛼𝑚𝑟-space, for short), if for each point 𝑥 and each 𝛼𝑚-closed set 𝐹 such that 𝑥 ∈ 𝐹𝑐, there 

exist disjoint 𝛼𝑚-open sets 𝑈 and 𝑉 such that 𝑥 ∈ 𝑈 and 𝐹 ⊆ 𝑉. 

(ii) 𝛼𝑚-normal space (𝛼𝑚𝑛-space, for short) iff for each pair of disjoint 𝛼𝑚-closed sets 𝐴 and 𝐵, there exist 

disjoint 𝛼𝑚-open sets 𝑈 and 𝑉 such that 𝐴 ⊆ 𝑈 and 𝐵 ⊆ 𝑉. 
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Theorem 4.19: A topological space (𝑋, 𝜏) is 𝛼𝑚𝑟-space if and only if for each 𝛼𝑚-closed subset 𝐺 of 𝑋 and 

𝑥 ∉ 𝐺 with 𝛼𝑚-𝑘𝑒𝑟(𝐺) ≠ 𝛼𝑚-𝑘𝑒𝑟({𝑥}) then there exist 𝛼𝑚-closed sets 𝐹1,𝐹2 such that 𝛼𝑚-𝑘𝑒𝑟(𝐺) ⊆ 𝐹1, 𝛼𝑚-

𝑘𝑒𝑟(𝐺)⋂𝐹2 = 𝜙 and 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ⊆ 𝐹2, 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝐹1  = 𝜙 and 𝐹1⋃𝐹2 = 𝑋. 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚𝑟-space and let 𝐺 be an 𝛼𝑚-closed set, 𝑥 ∉ 𝐺, then there exist disjoint 𝛼𝑚-open sets 

𝑈, 𝑉 such that 𝐺 ⊆ 𝑈, 𝑥 ∈ 𝑉 and 𝑈⋂𝑉 = 𝜙, then 𝑈𝑐  and 𝑉𝑐 are 𝛼𝑚-closed sets such that 𝑈𝑐⋃𝑉𝑐 = 𝑋. Put 

𝐹2 = 𝑈𝑐  and 𝐹1 = 𝑉𝑐, so we get 𝛼𝑚-𝑘𝑒𝑟(𝐺) ⊆ 𝑈 ⊆ 𝐹1, 𝛼𝑚-𝑘𝑒𝑟(𝐺)⋂𝐹2 = 𝜙 and 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ⊆ 𝑉 ⊆ 𝐹2, 𝛼𝑚-

𝑘𝑒𝑟({𝑥})⋂𝐹1 = 𝜙  and 𝐹1⋃𝐹2 = 𝑋.
 
 

Conversely, let for each 𝛼𝑚-closed subset 𝐺 of 𝑋  and 𝑥 ∉ 𝐺 with 𝛼𝑚-𝑘𝑒𝑟(𝐺) ≠ 𝛼𝑚-𝑘𝑒𝑟({𝑥}), then there exist 

𝛼𝑚-closed sets 𝐹1,𝐹2 such that 𝛼𝑚-𝑘𝑒𝑟(𝐺) ⊆ 𝐹1, 𝛼𝑚-𝑘𝑒𝑟(𝐺)⋂𝐹2 = 𝜙 and 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ⊆ 𝐹2, 𝛼𝑚-

𝑘𝑒𝑟({𝑥})⋂𝐹1 = 𝜙 and 𝐹1⋃𝐹2 = 𝑋. Then 𝐹1
𝑐  and 𝐹2

𝑐 are 𝛼𝑚-open sets such that 𝐹1
𝑐⋂𝐹2

𝑐 = 𝜙 and 𝛼𝑚-

𝑘𝑒𝑟(𝐺)⋂𝐹1
𝑐 = 𝜙, 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝐹2

𝑐 = 𝜙. So that 𝐺 ⊆ 𝐹2
𝑐  and 𝑥𝜆 ∈ 𝐹1

𝑐. Thus, (𝑋, 𝜏) is 𝛼𝑚𝑟-space. 
 

Lemma 4.20: Let (𝑋, 𝜏) be an 𝛼𝑚𝑟-space and 𝐹 be an 𝛼𝑚-closed set. Then 𝛼𝑚-𝑘𝑒𝑟(𝐹) = 𝐹 = 𝛼𝑚-𝑐𝑙(𝐹). 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚𝑟-space and 𝐹 be an 𝛼𝑚-closed set. Then for each 𝑥 ∉ 𝐹, there exist disjoint 𝛼𝑚-open 

sets 𝑈, 𝑉 such that 𝐹 ⊆ 𝑈 and 𝑥 ∈ 𝑉. Since 𝛼𝑚-𝑘𝑒𝑟(𝐹) ⊆ 𝑈, implies 𝛼𝑚-𝑘𝑒𝑟(𝐹)⋂𝑉 = 𝜙, thus 𝑥 ∉ 𝛼𝑚-𝑐𝑙(𝛼𝑚-

𝑘𝑒𝑟(𝐹)). We showing that if 𝑥 ∉ 𝐹 implies 𝑥 ∉ 𝛼𝑚-𝑐𝑙(𝛼𝑚-𝑘𝑒𝑟(𝐹)), therefore 𝛼𝑚-𝑐𝑙(𝛼𝑚-𝑘𝑒𝑟(𝐹)) ⊆ 𝐹 = 𝛼𝑚-

𝑐𝑙(𝐹). As 𝛼𝑚-𝑐𝑙(𝐹) = 𝐹 ⊆ 𝛼𝑚-𝑘𝑒𝑟(𝐹) [by definition (3.1)]. Thus, 𝛼𝑚-𝑘𝑒𝑟(𝐹) = 𝐹 = 𝛼𝑚-𝑐𝑙(𝐹). 
 

Theorem 4.21: A topological space (𝑋, 𝜏) is 𝛼𝑚𝑛-space if and only if for each disjoint 𝛼𝑚-closed sets 𝐺,𝐻 with 

𝛼𝑚-𝑘𝑒𝑟(𝐺) ≠  𝛼𝑚-𝑘𝑒𝑟(𝐻) then there exist 𝛼𝑚-closed sets 𝐹1,𝐹2 such that 𝛼𝑚-𝑘𝑒𝑟(𝐺) ⊆ 𝐹1, 𝛼𝑚-𝑘𝑒𝑟(𝐺)⋂𝐹2 =
𝜙

 
and 𝛼𝑚-𝑘𝑒𝑟(𝐻) ⊆ 𝐹2, 𝛼𝑚-𝑘𝑒𝑟(𝐻)⋂𝐹1 = 𝜙 and 𝐹1⋃𝐹2 = 𝑋.  

 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚𝑛-space and let for each disjoint 𝛼𝑚-closed  sets 𝐺,𝐻 with 𝛼𝑚-𝑘𝑒𝑟(𝐺) ≠ 𝛼𝑚-𝑘𝑒𝑟(𝐻) 

then there exist disjoint 𝛼𝑚-open sets 𝑈, 𝑉 such that 𝐺 ⊆ 𝑈 and 𝐻 ⊆ 𝑉 and 𝑈⋂𝑉 = 𝜙, then 𝑈𝑐  and 𝑉𝑐 are 𝛼𝑚-

closed sets such that 𝑈𝑐⋃𝑉𝑐 = 𝑋 and 𝛼𝑚-𝑘𝑒𝑟(𝐺)⋂𝑈𝑐 = 𝜙, 𝛼𝑚-𝑘𝑒𝑟(𝐻)⋂𝑉𝑐 = 𝜙. Put 𝑈𝑐 = 𝐹2 and 𝑉𝑐 = 𝐹1. 

Thus, 𝛼𝑚-𝑘𝑒𝑟(𝐺) ⊆ 𝐹1, 𝛼𝑚-𝑘𝑒𝑟(𝐺)⋂𝐹2 = 𝜙 and 𝛼𝑚-𝑘𝑒𝑟(𝐻) ⊆ 𝐹2, 𝛼𝑚-𝑘𝑒𝑟(𝐻)⋂𝐹1 = 𝜙. 

Conversely, let for each disjoint 𝛼𝑚-closed sets 𝐺,𝐻 with 𝛼𝑚-𝑘𝑒𝑟(𝐺) ≠  𝛼𝑚-𝑘𝑒𝑟(𝐻), there exist 𝛼𝑚-closed sets 

𝐹1,𝐹2 such that 𝛼𝑚-𝑘𝑒𝑟(𝐺) ⊆ 𝐹1, 𝛼𝑚-𝑘𝑒𝑟(𝐺)⋂𝐹2 = 𝜙 and 𝛼𝑚-𝑘𝑒𝑟(𝐻) ⊆ 𝐹2, 𝛼𝑚-𝑘𝑒𝑟(𝐻)⋂𝐹1 = 𝜙 and 

𝐹1⋃𝐹2 = 𝑋 implies 𝐹1
𝑐  and 𝐹2

𝑐 are 𝛼𝑚-open sets such that  𝐹1
𝑐⋂𝐹2

𝑐 = 𝜙. Put  𝐹1
𝑐 = 𝑉 and 𝐹2

𝑐 = 𝑈, thus 𝛼𝑚-

𝑘𝑒𝑟(𝐺) ⊆ 𝑈 and 𝛼𝑚-𝑘𝑒𝑟(𝐻) ⊆ 𝑉, so that 𝐺 ⊆ 𝑈 and 𝐻 ⊆ 𝑉. Thus (𝑋, 𝜏) is 𝛼𝑚𝑛-space. 
 

Remark 4.22: The relation between 𝛼𝑚-separation axioms can be representing as a matrix. Therefore, the 

element 𝑎𝑖𝑗  refers to this relation. As the following matrix representation shows: 

 

and 𝛼𝑚-𝑇0 𝛼𝑚-𝑇1 𝛼𝑚-𝑇2 𝛼𝑚-𝑅0 𝛼𝑚-𝑅1 

𝛼𝑚-𝑇0 𝛼𝑚-𝑇0 𝛼𝑚-𝑇1 𝛼𝑚-𝑇2 𝛼𝑚-𝑇1 𝛼𝑚-𝑇2 

𝛼𝑚-𝑇1 𝛼𝑚-𝑇1 𝛼𝑚-𝑇1 𝛼𝑚-𝑇2 𝛼𝑚-𝑇1 𝛼𝑚-𝑇2 

𝛼𝑚-𝑇2 𝛼𝑚-𝑇2 𝛼𝑚-𝑇2 𝛼𝑚-𝑇2 𝛼𝑚-𝑇2 𝛼𝑚-𝑇2 

𝛼𝑚-𝑅0 𝛼𝑚-𝑇1 𝛼𝑚-𝑇1 𝛼𝑚-𝑇2 𝛼𝑚-𝑅0 𝛼𝑚-𝑅1 

𝛼𝑚-𝑅1 𝛼𝑚-𝑇2 𝛼𝑚-𝑇2 𝛼𝑚-𝑇2 𝛼𝑚-𝑅1 𝛼𝑚-𝑅1 

 

Matrix Representation (4.1) 

The relation between 𝛼𝑚-separation axioms 

 

5. 𝜶𝒎-𝒌𝒓-spaces 

Definition 5.1: A topological space (𝑋, 𝜏) is said to be 𝛼𝑚-𝑘𝑟-space if and only if for each subset 𝐴 of 𝑋, 

then 𝛼𝑚-𝑘𝑒𝑟(𝐴) is an 𝛼𝑚-open set. 
 

Definition 5.2: A topological 𝛼𝑚-𝑘𝑟-space (𝑋, 𝜏) is called 𝛼𝑚-𝑇𝐾-space if and only if for each 𝑥 ∈ 𝑋, then 𝛼𝑚-

𝑘𝑒𝑟𝑑𝑟({𝑥}) is an 𝛼𝑚-open set. 
 

Example 5.3: Let 𝑋 = {𝑎, 𝑏} and let 𝜏 = {𝜙, 𝑋, {𝑎}} be a topology on 𝑋. Then, (𝑋, 𝜏) is  𝛼𝑚-𝑇𝐾-space.  
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Theorem 5.4: In topological 𝛼𝑚-𝑘𝑟-space (𝑋, 𝜏), every 𝛼𝑚-𝑇1-space is 𝛼𝑚-𝑇𝐾-space. 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇1-space. Then, for each 𝑥 ∈ 𝑋, 𝛼𝑚-𝑘𝑒𝑟({𝑥}) = {𝑥} [by theorem (4.7)]. As 𝛼𝑚-

𝑘𝑒𝑟𝑑𝑟({𝑥}) = 𝛼𝑚-𝑘𝑒𝑟({𝑥}) − {𝑥}, implies 𝛼𝑚-𝑘𝑒𝑟𝑑𝑟({𝑥}) = 𝜙. Thus, (𝑋, 𝜏) is 𝛼𝑚-𝑇𝐾-space.  
 

Theorem 5.5: In topological 𝛼𝑚-𝑘𝑟-space (𝑋, 𝜏), every 𝛼𝑚-𝑇𝐾-space is 𝛼𝑚-𝑇0-space. 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇𝐾-space and let 𝑥 ≠ 𝑦 ∈ 𝑋. Then, 𝛼𝑚-𝑘𝑒𝑟𝑑𝑟({𝑥}) is 𝛼𝑚-open set, therefore, there 

exist two cases: 

(i) 𝑦 ∈ 𝛼𝑚-𝑘𝑒𝑟𝑑𝑟({𝑥}) is 𝛼𝑚-open set. Since 𝑥 ∉ 𝛼𝑚-𝑘𝑒𝑟𝑑𝑟({𝑥}). Thus (𝑋, 𝜏) is 𝛼𝑚-𝑇0-space 

(ii) 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟𝑑𝑟({𝑥}), implies 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑥}). But 𝛼𝑚-𝑘𝑒𝑟({𝑥}) is 𝛼𝑚-open set. Thus, (𝑋, 𝜏) is 𝛼𝑚-𝑇0-

space.     
 

Definition 5.6: A topological 𝛼𝑚-𝑘𝑟-space (𝑋, 𝜏) is said to be 𝛼𝑚-𝑇𝐿-space if and only if for each 𝑥 ≠ 𝑦 ∈ 𝑋, 

𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦}) is degenerated (empty or singleton set). 
 

Example 5.7: Let 𝑋 = {𝑎, 𝑏, 𝑐} and let 𝜏 = {𝜙, 𝑋, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}} be a topology on 𝑋. Then, (𝑋, 𝜏) is 𝛼𝑚-𝑇𝐿-

space.   
 

Theorem 5.8: In topological 𝛼𝑚-𝑘𝑟-space (𝑋, 𝜏), every 𝛼𝑚-𝑇1-space is 𝛼𝑚-𝑇𝐿-space. 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇1-space. Then for each 𝑥 ≠ 𝑦 ∈ 𝑋, 𝛼𝑚-𝑘𝑒𝑟({𝑥}) = {𝑥} and 𝛼𝑚-𝑘𝑒𝑟({𝑦}) =
{𝑦} [by theorem (4.7)], implies 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦}) = 𝜙. Thus (𝑋, 𝜏) is 𝛼𝑚-𝑇𝐿-space.    
 

Theorem 5.9: In topological 𝛼𝑚-𝑘𝑟-space (𝑋, 𝜏), every 𝛼𝑚-𝑇𝐿-space is 𝛼𝑚-𝑇0-space. 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇𝐿-space. Then for each 𝑥 ≠ 𝑦 ∈ 𝑋, 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦}) is degenerated 

(empty or singleton set). Therefore there exist three cases: 

(i) 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦}) = 𝜙, implies (𝑋, 𝜏) is 𝛼𝑚-𝑇0-space. 

(ii) 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦}) = {𝑥} or {𝑦}, implies 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑥}) or 𝑥 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑦}), implies (𝑋, 𝜏) is 

𝛼𝑚-𝑇0-space. 

(iii) 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦}) = {𝑧} , 𝑧 ≠ 𝑥 ≠ 𝑦 , 𝑧 ∈ 𝑋, implies 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑥}) and 𝑥 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑦}), 

implies (𝑋, 𝜏) is 𝛼𝑚-𝑇0-space. 
 

Definition 5.10: A topological 𝛼𝑚-𝑘𝑟-space (𝑋, 𝜏) is said to be 𝛼𝑚-𝑇𝑁-space if and only if for each 𝑥 ≠ 𝑦 ∈
𝑋, 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦}) is empty or {𝑥} or {𝑦}. 
 

Example 5.11: Let 𝑋 = {𝑎, 𝑏, 𝑐} and let 𝜏 = {𝜙, 𝑋, {𝑎}, {𝑏}, {𝑎, 𝑏}} be a topology on 𝑋. Then, (𝑋, 𝜏) is 𝛼𝑚- 𝑇𝑁-

space. 
 

Example 5.12: Let 𝑋 = ℝ (the set of all real number) and let 𝜏 = {𝜙, ℝ, [𝑎, ∞), 𝑎 ∈ ℝ} be a topology on 𝑋. 

Then, (𝑋, 𝜏) is 𝛼𝑚-𝑇0-space but not 𝛼𝑚-𝑇𝐾 , 𝛼𝑚-𝑇𝐿  or 𝛼𝑚-𝑇𝑁 spaces. 
 

Example 5.13: Let 𝑋 = ℕ (the set of all natural number) and let  𝜏 = {𝜙, ℕ, {𝑛, 𝑛 + 1, 𝑛 + 2, … }, {𝑛 + 1, 𝑛 +
2}, … } be a topology on 𝑋. Then, (𝑋, 𝜏) is 𝛼𝑚-𝑇𝐾-space but not 𝛼𝑚-𝑇𝐿  or 𝛼𝑚-𝑇𝑁 spaces.  
 

Example 5.14: Let 𝑋 = {𝑎, 𝑏, 𝑐} and let 𝜏 = {𝜙, 𝑋, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}} be a topology on 𝑋. Then, (𝑋, 𝜏) is 𝛼𝑚-𝑇𝐿-

space but not 𝛼𝑚-𝑇𝑁-space.  
 

Theorem 5.15: In topological 𝛼𝑚-𝑘𝑟-space (𝑋, 𝜏), every 𝛼𝑚-𝑇1-space is 𝛼𝑚-𝑇𝑁-space. 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇1-space. Then for each 𝑥 ≠ 𝑦 ∈ 𝑋, 𝛼𝑚-𝑘𝑒𝑟({𝑥}) = {𝑥} and 𝛼𝑚-𝑘𝑒𝑟({𝑦}) = {𝑦} 

[by theorem (4.7)], implies 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦}) = 𝜙. Thus (𝑋, 𝜏) is a 𝛼𝑚-𝑇𝑁-space.    
 

Theorem 5.16: In topological 𝛼𝑚-𝑘𝑟-space (𝑋, 𝜏), every 𝛼𝑚-𝑇𝑁-space is 𝛼𝑚-𝑇0-space. 
 

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇𝑁-space. Then for each 𝑥 ≠ 𝑦 ∈ 𝑋,  𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦}) is degenerated 

(empty or singleton set). Therefore there exist two cases: 

(i) 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦}) = 𝜙, implies (𝑋, 𝜏) is 𝛼𝑚-𝑇0-space 

(ii) 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦}) = {𝑥} or {𝑦}, implies 𝑦 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑥}) or 𝑥 ∉ 𝛼𝑚-𝑘𝑒𝑟({𝑦}), implies (𝑋, 𝜏) is 

𝛼𝑚-𝑇0-space.            
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Theorem 5.17: A topological 𝛼𝑚-𝑘𝑟-space (𝑋, 𝜏) is 𝛼𝑚-𝑇2-space iff for each 𝑥 ≠ 𝑦 ∈ 𝑋, then 𝛼𝑚-

𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦}) = 𝜙. 

  

Proof: Let (𝑋, 𝜏) be an 𝛼𝑚-𝑇2-space. Then for each 𝑥 ≠ 𝑦 ∈ 𝑋 there exist disjoint 𝛼𝑚-open sets 𝑈, 𝑉 such that 

𝑥 ∈ 𝑈, and 𝑦 ∈ 𝑉. Hence 𝛼𝑚-𝑘𝑒𝑟({𝑥}) ⊆ 𝑈 and 𝛼𝑚-𝑘𝑒𝑟({𝑦}) ⊆ 𝑉. Thus 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦}) = 𝜙. 

Conversely, let for each 𝑥 ≠ 𝑦 ∈ 𝑋, 𝛼𝑚-𝑘𝑒𝑟({𝑥})⋂𝛼𝑚-𝑘𝑒𝑟({𝑦}) = 𝜙. Since (𝑋, 𝜏) be a topological 𝛼𝑚-𝑘𝑟-

space, this means 𝛼𝑚-kernel is an 𝛼𝑚-open set. Thus (𝑋, 𝜏) is 𝛼𝑚-𝑇2-space.   
 

Theorem 5.18: A topological 𝛼𝑚-𝑘𝑟-space (𝑋, 𝜏) is 𝛼𝑚𝑟-space iff for each 𝐺 𝛼𝑚-closed set and 𝑥 ∉ 𝐺, 

then 𝛼𝑚-𝑘𝑒𝑟(𝐺)⋂𝛼𝑚-𝑘𝑒𝑟({𝑥}) = 𝜙. 
 

Proof: By the same way of proof of theorem (5.17).      
 

Theorem 5.19: A topological 𝛼𝑚-𝑘𝑟-space (𝑋, 𝜏) is 𝛼𝑚𝑛-space iff for each disjoint 𝛼𝑚-closed sets  𝐺, 𝐻, then 

𝛼𝑚-𝑘𝑒𝑟(𝐺)⋂𝛼𝑚-𝑘𝑒𝑟(𝐻) = 𝜙. 
 

Proof: By the same way of proof of theorem (5.17).      
  

Theorem 5.20: A topological 𝛼𝑚-𝑘𝑟-space (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space iff it is 𝛼𝑚-𝑅0-space and 𝛼𝑚-𝑇𝐾-space. 
  

Proof: By theorem (5.5) and remark (4.17). 
 

Theorem 5.21: A topological 𝛼𝑚-𝑘𝑟-space (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space iff it is 𝛼𝑚-𝑅0-space and 𝛼𝑚-𝑇𝐿-space.  
  

Proof: By theorem (5.9) and remark (4.17). 
 

Theorem 5.22: A topological 𝛼𝑚-𝑘𝑟-space (𝑋, 𝜏) is 𝛼𝑚-𝑇1-space if and only if it is 𝛼𝑚-𝑅0-space and 𝛼𝑚-𝑇𝑁-

space.  
 

Proof: By theorem (5.14) and remark (4.17). 
 

Theorem 5.23: A topological 𝛼𝑚-𝑘𝑟-space (𝑋, 𝜏) is 𝛼𝑚-𝑇𝑖-space if and only if it is 𝛼𝑚-𝑅𝑖−1-space and 𝛼𝑚-𝑇𝐾-

space, 𝑖 = 1,2. 
 

Proof: By theorem (5.5) and remark (4.17). 
 

Theorem 5.24: A topological 𝛼𝑚-𝑘𝑟-space (𝑋, 𝜏) is 𝛼𝑚-𝑇𝑖-space if and only if it is 𝛼𝑚-𝑅𝑖−1-space and 𝛼𝑚-𝑇𝐿-

space, 𝑖 = 1,2.  
  

Proof: By theorem (5.9) and remark (4.17). 
 

Theorem 5.25: A topological 𝛼𝑚-𝑘𝑟-space (𝑋, 𝜏) is 𝛼𝑚-𝑇𝑖-space if and only if it is 𝛼𝑚-𝑅𝑖−1-space and 𝛼𝑚-𝑇𝑁-

space, 𝑖 = 1,2.  
 

Proof: By theorem (5.14) and remark (4.17). 
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Remark 5.26: The relation between 𝛼𝑚-separation axioms can be representing as a matrix. Therefore, the 

element 𝑎𝑖𝑗  refers to this relation. As the following matrix representation shows:  

 

and 𝛼𝑚-𝑇0 𝛼𝑚-𝑇1 𝛼𝑚-𝑇2 𝛼𝑚-𝑅0 𝛼𝑚-𝑅1 𝛼𝑚-𝑇𝐾  𝛼𝑚-𝑇𝐿  𝛼𝑚-𝑇𝑁 

𝛼𝑚-𝑇0 𝛼𝑚-𝑇0 𝛼𝑚-𝑇1 𝛼𝑚-𝑇2 𝛼𝑚-𝑇1 𝛼𝑚-𝑇2 𝛼𝑚-𝑇𝐾  𝛼𝑚-𝑇𝐿  𝛼𝑚-𝑇𝑁 

𝛼𝑚-𝑇1 𝛼𝑚-𝑇1 𝛼𝑚-𝑇1 𝛼𝑚-𝑇2 𝛼𝑚-𝑇1 𝛼𝑚-𝑇2 𝛼𝑚-𝑇1 𝛼𝑚-𝑇1 𝛼𝑚-𝑇1 

𝛼𝑚-𝑇2 𝛼𝑚-𝑇2 𝛼𝑚-𝑇2 𝛼𝑚-𝑇2 𝛼𝑚-𝑇2 𝛼𝑚-𝑇2 𝛼𝑚-𝑇2 𝛼𝑚-𝑇2 𝛼𝑚-𝑇2 

𝛼𝑚-𝑅0 𝛼𝑚-𝑇1 𝛼𝑚-𝑇1 𝛼𝑚-𝑇2 𝛼𝑚-𝑅0 𝛼𝑚-𝑅1 𝛼𝑚-𝑇1 𝛼𝑚-𝑇1 𝛼𝑚-𝑇1 

𝛼𝑚-𝑅1 𝛼𝑚-𝑇2 𝛼𝑚-𝑇2 𝛼𝑚-𝑇2 𝛼𝑚-𝑅1 𝛼𝑚-𝑅1 𝛼𝑚-𝑇2 𝛼𝑚-𝑇2 𝛼𝑚-𝑇2 

𝛼𝑚-𝑇𝐾  𝛼𝑚-𝑇𝐾  𝛼𝑚-𝑇1 𝛼𝑚-𝑇2 𝛼𝑚-𝑇1 𝛼𝑚-𝑇2 𝛼𝑚-𝑇𝐾  𝛼𝑚-𝑇𝐿  𝛼𝑚-𝑇0 

𝛼𝑚-𝑇𝐿  𝛼𝑚-𝑇𝐿  𝛼𝑚-𝑇1 𝛼𝑚-𝑇2 𝛼𝑚-𝑇1 𝛼𝑚-𝑇2 𝛼𝑚-𝑇𝐿  𝛼𝑚-𝑇𝐿  𝛼𝑚-𝑇0 

𝛼𝑚-𝑇𝑁 𝛼𝑚-𝑇𝑁 𝛼𝑚-𝑇1 𝛼𝑚-𝑇2 𝛼𝑚-𝑇1 𝛼𝑚-𝑇2 𝛼𝑚-𝑇0 𝛼𝑚-𝑇0 𝛼𝑚-𝑇𝑁 

 

Matrix Representation (5.1) 

The relation between 𝛼𝑚-separation axioms in topological 𝛼𝑚-𝑘𝑟-spaces 
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