Fuzzy α^m -Separation Axioms

¹Qays Hatem Imran, ²Hayder Kadhim Zghair

¹Department of Mathematics, College of Education for Pure Science, Al-Muthanna University, Samawah, Iraq ²Department of Software, College of Information Technology, University of Babylon, Babylon, Iraq

Abstract: This paper will introduce a new class of fuzzy closed set (briefly F-CS) called fuzzy α^m -closed set as well as, introduce the fuzzy α^m -kernel set of the fuzzy topological space. The investigation will address and discuss some of the properties of the fuzzy separation axioms such as fuzzy α^m - R_i -space and fuzzy α^m - T_j -space (note that, the indexes *i* and *j* are natural numbers of the spaces *R* and *T* are from 0 to 3 and from 0 to 4 respectively).

Mathematics Subject Classification (2010): 54A40.

Keywords: $F\alpha^m$ -closed set, $F\alpha^m$ - R_i -space, i = 0, 1, 2, 3 and $F\alpha^m$ - T_i -space, j = 0, 1, 2, 3, 4.

1. INTRODUCTION

In 1965 Zadeh studied the fuzzy sets (briefly F-sets) (see [6]) which plays such a role in the field of fuzzy topological spaces (or simply fts). The fuzzy topological spaces investigated by Chang in 1968 (see [3]). A. S. Bin Shahna [1] defined fuzzy α -closed sets. In 1997, fuzzy generalized closed set (briefly Fg-CS) was introduced by G. Balasubramania and P. Sundaram [5]. In 2014, M. Mathew and R. Parimelazhagan [7] defined α^m -closed sets of topological spaces. The aim of this paper is to introduce a concept of $F\alpha^m$ -closed sets and study their basic properties in fts. Furthermore, the investigation will include some of the properties of the fuzzy separation axioms such fuzzy $\alpha^m R_i$ -space and fuzzy α^m . T_i -space (here the indexes *i* and *j* are natural numbers of the spaces *R* and *T* are from 0 to 3 and from 0 to 4 respectively).

2. PRELIMINARIES

Throughout this paper, (X, τ) or simply X always mean a fts. A fuzzy point [4] with support $x \in X$ and value λ ($0 < \lambda \le 1$) at $x \in X$ will be denoted by x_{λ} , and for fuzzy set $\mathcal{A}, x_{\lambda} \in \mathcal{A}$ iff $\lambda \le \mathcal{A}(x)$. Two fuzzy points x_{λ} and y_{σ} are said to be distinct iff their supports are distinct. That is, by 0_X and 1_X we mean the constant fuzzy sets taking the values 0 and 1 on X, respectively [2]. For a fuzzy set \mathcal{A} in a fts $(X, \tau), cl(\mathcal{A}), int(\mathcal{A})$ and $\mathcal{A}^c = 1_X - \mathcal{A}$ represents the fuzzy closure of \mathcal{A} , the fuzzy interior of \mathcal{A} and the fuzzy complement of \mathcal{A} respectively.

Definition 2.1:[12] A fuzzy point in a set X with support x and membership value 1 is called crisp point, denoted by x_1 . For any fuzzy set \mathcal{A} in X, we have $x_1 \in \mathcal{A}$ iff $\mathcal{A}(x) = 1$.

Definition 2.2:[8] A fuzzy point $x_{\lambda} \in \mathcal{A}$ is called quasi-coincident (briefly *q*-coincident) with the fuzzy set \mathcal{A} is denoted by $x_{\lambda}q\mathcal{A}$ iff $\lambda + \mathcal{A}(x) > 1$. A fuzzy set \mathcal{A} in a fts (X, τ) is called *q*-coincident with a fuzzy set \mathcal{B} which is denoted by $\mathcal{A}q\mathcal{B}$ iff there exists $x \in X$ such that $\mathcal{A}(x) + \mathcal{B}(x) > 1$. If the fuzzy sets \mathcal{A} and \mathcal{B} in a fts (X, τ) are not *q*-coincident then we write $\mathcal{A}\bar{q}\mathcal{B}$. Note that $\mathcal{A} \leq \mathcal{B} \Leftrightarrow \mathcal{A}\bar{q}(1_X - \mathcal{B})$.

Definition 2.3:[8] A fuzzy set \mathcal{A} in a fts (X, τ) is called *q*-neighbourhood (briefly *q*-nhd) of a fuzzy point x_{λ} (resp. fuzzy set \mathcal{B}) if there is a F-OS \mathcal{M} in a fts (X, τ) such that $x_{\lambda}q\mathcal{M} \leq \mathcal{A}$ (resp. $\mathcal{B}q\mathcal{M} \leq \mathcal{A}$).

Definition 2.4:[1] A fuzzy set \mathcal{A} of a fts (X, τ) is called a fuzzy α -open set (briefly $F\alpha$ -OS) if $\mathcal{A} \leq int(cl(int(\mathcal{A})))$ and a fuzzy α -closed set (briefly $F\alpha$ -CS) if $cl(int(cl(\mathcal{A}))) \leq \mathcal{A}$. The fuzzy α -closure of a fuzzy set \mathcal{A} of fts (X, τ) is the intersection of all $F\alpha$ -CS that contain \mathcal{A} and is denoted by $\alpha cl(\mathcal{A})$.

Definition 2.5:[5] A fuzzy set \mathcal{A} of a fts (X, τ) is called a fuzzy g-closed set (briefly Fg-CS) if $cl(\mathcal{A}) \leq \mathcal{U}$ whenever $\mathcal{A} \leq \mathcal{U}$ and \mathcal{U} is a F-OS in X.

Definition 2.6:[10] A fuzzy set \mathcal{A} of a fts (X, τ) is called a fuzzy α g-closed set (briefly F α g-CS) if $\alpha cl(\mathcal{A}) \leq \mathcal{U}$ whenever $\mathcal{A} \leq \mathcal{U}$ and \mathcal{U} is a F α -OS in X.

Definition 2.7:[9] A fuzzy set \mathcal{A} of a fts (X, τ) is called a fuzzy $g\alpha$ -closed set (briefly $Fg\alpha$ -CS) if $\alpha cl(\mathcal{A}) \leq \mathcal{U}$ whenever $\mathcal{A} \leq \mathcal{U}$ and \mathcal{U} is a F-OS in X.

Remark 2.8:[5,11] In a fts (X, τ), then the following statements are true: (i) Every F-CS is a Fg-CS. (ii) Every F-CS is a F α -CS.

Remark 2.9:[9,10] In a fts (X, τ), then the following statements are true:
(i) Every Fg-CS is a Fgα-CS.
(ii) Every Fα-CS is a Fαg-CS.
(iii) Every Fαg-CS is a Fgα-CS.

3. FUZZY α^m -CLOSED SETS

Definition 3.1: A fuzzy set \mathcal{A} of a fts (X, τ) is called a fuzzy α^m -closed set (briefly $F\alpha^m$ -CS) if $int(cl(\mathcal{A})) \leq \mathcal{U}$ whenever $\mathcal{A} \leq \mathcal{U}$ and \mathcal{U} is a F α -OS. The complement of a fuzzy α^m -closed set in X is fuzzy α^m -open set (briefly $F\alpha^m$ -OS) in X, the family of all $F\alpha^m$ -OS (resp. $F\alpha^m$ -CS) of a fts (X, τ) is denoted by $F\alpha^m$ -O(X) (resp. $F\alpha^m$ -C(X)).

Example 3.2: Let $X = \{x, y\}$ and the fuzzy set \mathcal{A} in X defined as follows: $\mathcal{A}(x) = 0.5$, $\mathcal{A}(y) = 0.5$. Let $\tau = \{0_X, \mathcal{A}, 1_X\}$ be a fts. Then the fuzzy sets $0_X, \mathcal{A}$ and 1_X are $F\alpha^m$ -OS and $F\alpha^m$ -CS at the same time in X.

Remark 3.3: In a fts (X, τ) , then the following statements are true:

(i) Every F-CS is a $F\alpha^m$ -CS.

(ii) Every $F\alpha^m$ -CS is a $F\alpha$ -CS.

(iii) Every $F\alpha^m$ -CS is a $F\alpha g$ -CS.

(iv) Every $F\alpha^m$ -CS is a Fg α -CS.

Proof: (i) This follows directly from the definition (3.1).

(ii) Let \mathcal{A} be a $F\alpha^m$ -CS in X and let \mathcal{U} be a F-OS such that $\mathcal{A} \leq \mathcal{U}$. Since every F-OS is a $F\alpha$ -OS and \mathcal{A} is a $F\alpha^m$ -CS, $int(cl(\mathcal{A})) \leq (int(cl(\mathcal{A}))) \vee (cl(int(\mathcal{A}))) \leq \mathcal{U}$. Therefore, \mathcal{A} is a $F\alpha$ -CS in X.

(iii) From the part (ii) and remark (2.9) (ii).

(iv) From the part (iii) and remark (2.9) (iii).

Theorem 3.4: A fuzzy set \mathcal{A} is $F\alpha^m$ -CS iff $int(cl(\mathcal{A})) - \mathcal{A}$ contains no non-empty $F\alpha^m$ -CS.

Proof: Necessity. Suppose that \mathcal{F} is a non-empty $F\alpha^m$ -closed subset of $int(cl(\mathcal{A}))$ such that $\mathcal{F} < int(cl(\mathcal{A})) - \mathcal{A}$. Then $\mathcal{F} \leq int(cl(\mathcal{A})) - \mathcal{A}$. Then $\mathcal{F} \leq int(cl(\mathcal{A})) \wedge \mathcal{A}^c$. Therefore $\mathcal{F} \leq int(cl(\mathcal{A}))$ and $\mathcal{F} \leq \mathcal{A}^c$. Since \mathcal{F}^c is a $F\alpha^m$ -OS and \mathcal{A} is a $F\alpha^m$ -CS, $int(cl(\mathcal{A})) \leq \mathcal{F}^c$. Thus $\mathcal{F} \leq (int(cl(\mathcal{A})))^c$. Therefore $\mathcal{F} \leq (int(cl(\mathcal{A}))) \wedge (int(cl(\mathcal{A})))^c = 0_X$. Therefore $\mathcal{F} = 0_X \Longrightarrow int(cl(\mathcal{A})) - \mathcal{A}$ contains no non-empty $F\alpha^m$ -CS.

Sufficiency. Let $\mathcal{A} \leq \mathcal{U}$ be a $F\alpha^m$ -OS. Suppose that $int(cl(\mathcal{A}))$ is not contained in \mathcal{U} . Then $(int(cl(\mathcal{A})))^c$ is a nonempty $F\alpha^m$ -CS and contained in $int(cl(\mathcal{A})) - \mathcal{A}$ which is a contradiction. Therefore, $int(cl(\mathcal{A})) \leq \mathcal{U}$ and hence \mathcal{A} is a $F\alpha^m$ -CS.

Theorem 3.5: Let $\mathcal{B} \leq Y \leq X$, if \mathcal{B} is a $F\alpha^m$ -CS relative to Y and Y is a F-OS then \mathcal{B} is a $F\alpha^m$ -CS in a fts (X, τ) .

Proof: Let \mathcal{U} be a $F\alpha$ -OS in a fts (X, τ) such that $\mathcal{B} \leq \mathcal{U}$. Given that $\mathcal{B} \leq Y \leq X$. Therefore $\mathcal{B} \leq Y$ and $\mathcal{B} \leq \mathcal{U}$. This implies $\mathcal{B} \leq Y \wedge \mathcal{U}$. Since \mathcal{B} is a $F\alpha^m$ -CS relative to Y, then $int(cl(\mathcal{B})) \leq \mathcal{U} \cdot Y \wedge int(cl(\mathcal{B})) \leq Y \wedge \mathcal{U}$ implies that $Y \wedge (int(cl(\mathcal{B}))) \leq \mathcal{U}$. Thus $[Y \wedge int(cl(\mathcal{B}))] \vee [int(cl(\mathcal{B}))]^c \leq \mathcal{U} \vee [int(cl(\mathcal{B}))]^c$. This implies that $(Y \vee (int(cl(\mathcal{B})))^c) \wedge (int(cl(\mathcal{B}))) \vee (int(cl(\mathcal{B})))^c \leq \mathcal{U} \vee (int(cl(\mathcal{B})))^c$. Therefore $(Y < (int(cl(\mathcal{B})))^c) \leq \mathcal{U} \vee (int(cl(\mathcal{B})))^c$. Since Y is a F-OS in X. $int(cl(Y)) \leq \mathcal{U} \vee (int(cl(\mathcal{B})))^c$. Also $\mathcal{B} \leq Y$ implies that $int(cl(\mathcal{B})) \leq int(cl(\mathcal{B})) \leq \mathcal{U} \vee (int(cl(\mathcal{B})))^c$. Therefore $int(cl(\mathcal{B})) \leq \mathcal{U}$. Since $int(cl(\mathcal{B})) \leq int(cl(\mathcal{B})) \leq \mathcal{U} \vee (int(cl(\mathcal{B})))^c$. Therefore $int(cl(\mathcal{B})) \leq \mathcal{U}$. Since $int(cl(\mathcal{B})) \leq int(cl(\mathcal{B})) \leq \mathcal{U} \vee (int(cl(\mathcal{B})))^c$. Therefore $int(cl(\mathcal{B})) \leq \mathcal{U}$. Since $int(cl(\mathcal{B})) \leq int(cl(\mathcal{B})) \leq \mathcal{U} \vee (int(cl(\mathcal{B})))^c$. Therefore $int(cl(\mathcal{B})) \leq \mathcal{U}$. Since $int(cl(\mathcal{B})) \leq int(cl(\mathcal{B})) \leq \mathcal{U} \vee (int(cl(\mathcal{B})))^c$. Therefore $int(cl(\mathcal{B})) \leq \mathcal{U}$. Since $int(cl(\mathcal{B}))$ is not contained in $(int(cl(\mathcal{B})))^c$, \mathcal{B} is a $F\alpha^m$ -CS relative to X.

Theorem 3.6: If \mathcal{A} is a $F\alpha^m$ -CS and $\mathcal{A} \leq \mathcal{B} \leq int(cl(\mathcal{A}))$, then \mathcal{B} is a $F\alpha^m$ -CS.

Proof: Let \mathcal{A} be a $F\alpha^m$ -CS such that $\mathcal{A} \leq \mathcal{B} \leq int(cl(\mathcal{A}))$. Let \mathcal{U} be a $F\alpha$ -OS in a fts (X, τ) such that $\mathcal{B} \leq \mathcal{U}$. Since \mathcal{A} is a $F\alpha^m$ -CS, we have $int(cl(\mathcal{A})) \leq \mathcal{U}$ whenever $\mathcal{A} \leq \mathcal{U}$. Since $\mathcal{A} \leq \mathcal{B}$ and $\mathcal{B} \leq int(cl(\mathcal{A}))$, then $int(cl(\mathcal{B})) \leq int(cl(int(cl(\mathcal{A}))))) \leq int(cl(\mathcal{A})) \leq \mathcal{U}$. Therefore, $nt(cl(\mathcal{B})) \leq \mathcal{U}$. Thus, \mathcal{B} is a $F\alpha^m$ -CS in X.

Theorem 3.7: The intersection of a $F\alpha^m$ -CS and a F-CS is a $F\alpha^m$ -CS.

Proof: Let \mathcal{A} be a $F\alpha^m$ -CS and \mathcal{F} be a F-CS. Since \mathcal{A} is a $F\alpha^m$ -CS, $int(cl(\mathcal{A})) \leq \mathcal{U}$ whenever $\mathcal{A} \leq \mathcal{U}$ where \mathcal{U} is a $F\alpha$ -OS. To show that $\mathcal{A} \wedge \mathcal{F}$ is a $F\alpha^m$ -CS. It is enough to show that $int(cl(\mathcal{A} \wedge \mathcal{F})) \leq \mathcal{U}$ whenever $\mathcal{A} \wedge \mathcal{F} \leq \mathcal{U}$, where \mathcal{U} is a $F\alpha$ -OS. Let $\mathcal{M} = 1_X - \mathcal{F}$ then $\mathcal{A} \leq \mathcal{U} \vee \mathcal{M}$. Since \mathcal{M} is a F-OS, $\mathcal{U} \vee \mathcal{M}$ is a $F\alpha$ -OS and \mathcal{A} is a $F\alpha^m$ -CS, $int(cl(\mathcal{A})) \leq \mathcal{U} \vee \mathcal{M}$. Now, $int(cl(\mathcal{A} \wedge \mathcal{F})) \leq int(cl(\mathcal{A})) \wedge int(cl(\mathcal{F})) \leq int(cl(\mathcal{A})) \wedge \mathcal{F} \leq (\mathcal{U} \vee \mathcal{M}) \wedge \mathcal{F} \leq (\mathcal{U} \wedge \mathcal{F}) \vee (\mathcal{M} \wedge \mathcal{F}) \leq (\mathcal{U} \wedge \mathcal{F}) \vee 0_X \leq \mathcal{U}$. This implies that $\mathcal{A} \wedge \mathcal{F}$ is a $F\alpha^m$ -CS.

Theorem 3.8: If \mathcal{A} and \mathcal{B} are two $F\alpha^m$ -CS in a fts (X, τ) , then $\mathcal{A} \wedge \mathcal{B}$ is a $F\alpha^m$ -CS in X.

Proof: Let \mathcal{A} and \mathcal{B} be two $F\alpha^m$ -CS in a fts (X, τ) . Let \mathcal{U} be a $F\alpha$ -OS in X such that $\mathcal{A} \land \mathcal{B} \leq \mathcal{U}$. Now, $int(cl(\mathcal{A} \land \mathcal{B})) \leq int(cl(\mathcal{A})) \land int(cl(\mathcal{B})) \leq \mathcal{U}$. Hence $\mathcal{A} \land \mathcal{B}$ is a $F\alpha^m$ -CS.

Remark 3.9: The union of two $F\alpha^m$ -CS need not be a $F\alpha^m$ -CS.

Definition 3.10: The intersection of all $F\alpha^m$ -CS in a fts (X, τ) containing \mathcal{A} is called fuzzy α^m -closure of \mathcal{A} and is denoted by α^m - $cl(\mathcal{A})$, α^m - $cl(\mathcal{A}) = \land \{\mathcal{B} : \mathcal{A} \leq \mathcal{B}, \mathcal{B} \text{ is a } F\alpha^m$ -CS}.

Definition 3.11: The union of all $F\alpha^m$ -OS in a fts (X, τ) contained in \mathcal{A} is called fuzzy α^m -interior of \mathcal{A} and is denoted by α^m -int (\mathcal{A}) , α^m -int $(\mathcal{A}) = \vee \{\mathcal{B}: \mathcal{A} \ge \mathcal{B}, \mathcal{B} \text{ is a } F\alpha^m$ -OS}.

Proposition 3.12: Let \mathcal{A} be any fuzzy set in a fts (X, τ). Then the following properties hold:

(i) α^{m} -int(\mathcal{A}) = \mathcal{A} iff \mathcal{A} is a F α^{m} -OS.

(ii) α^m - $cl(\mathcal{A}) = \mathcal{A}$ iff \mathcal{A} is a F α^m -CS.

(iii) α^{m} -int(\mathcal{A}) is the largest F α^{m} -OS contained in \mathcal{A} .

(iv) α^m -*cl*(\mathcal{A}) is the smallest $F\alpha^m$ -CS containing \mathcal{A} .

Proof: (i), (ii), (iii) and (iv) are obvious.

Proposition 3.13: Let \mathcal{A} be any fuzzy set in a fts (X, τ) . Then the following properties hold: (i) α^{m} -int $(1_{X} - \mathcal{A}) = 1_{X} - (\alpha^{m}$ -cl $(\mathcal{A}))$, (ii) α^{m} -cl $(1_{X} - \mathcal{A}) = 1_{X} - (\alpha^{m}$ -int $(\mathcal{A}))$.

Proof: (i) By definition, $\alpha^m - cl(\mathcal{A}) = \wedge \{\mathcal{B}: \mathcal{A} \leq \mathcal{B}, \mathcal{B} \text{ is a } F\alpha^m - CS\}$ $1_X - (\alpha^m - cl(\mathcal{A})) = 1_X - \wedge \{\mathcal{B}: \mathcal{A} \leq \mathcal{B}, \mathcal{B} \text{ is a } F\alpha^m - CS\}$ $= \vee \{1_X - \mathcal{B}: \mathcal{A} \leq \mathcal{B}, \mathcal{B} \text{ is a } F\alpha^m - CS\}$ $= \vee \{\mathcal{H}: 1_X - \mathcal{A} \geq \mathcal{H}, \mathcal{H} \text{ is a } F\alpha^m - OS\}$ $= \alpha^m - int(1_X - \mathcal{A})$

(ii) The proof is similar to (i).

Definition 3.14: A fuzzy set \mathcal{A} in a fts (X, τ) is said to be a fuzzy α^m -neighbourhood (briefly $F\alpha^m$ -nhd) of a fuzzy point x_{λ} if there exists a $F\alpha^m$ -OS \mathcal{B} such that $x_{\lambda} \in \mathcal{B} \leq \mathcal{A}$. A $F\alpha^m$ -nhd \mathcal{A} is said to be a $F\alpha^m$ -open-nhd (resp. $F\alpha^m$ -closed-nhd) iff \mathcal{A} is a $F\alpha^m$ -OS (resp. $F\alpha^m$ -CS). A fuzzy set \mathcal{A} in a fts (X, τ) is said to be a fuzzy α^m -q-neighbourhood (briefly $F\alpha^m$ -q-nhd) of a fuzzy point x_{λ} (resp. fuzzy set \mathcal{B}) if there exists a $F\alpha^m$ -OS \mathcal{M} in a fts (X, τ) such that $x_{\lambda}q\mathcal{M} \leq \mathcal{A}$ (resp. $\mathcal{B}q\mathcal{M} \leq \mathcal{A}$).

Theorem 3.15: A fuzzy set \mathcal{A} of a fts (X, τ) is $F\alpha^m$ -CS iff $\mathcal{A}\bar{q}\mathcal{K} \Rightarrow int(cl(\mathcal{A}))\bar{q}\mathcal{K}$, for every $F\alpha$ -CS \mathcal{K} of X.

Proof: Necessity. Let \mathcal{K} be a F α -CS and $\mathcal{A}\bar{q}\mathcal{K}$. Then $\mathcal{A} \leq 1_X - \mathcal{K}$ and $1_X - \mathcal{K}$ is a F α -OS in X which implies that $int(cl(\mathcal{A})) \leq 1_X - \mathcal{K}$ as \mathcal{A} is a F α^m -CS. Hence, $int(cl(\mathcal{A}))\bar{q}\mathcal{K}$.

Sufficiency. Let \mathcal{U} be a F α -OS of a fts (X, τ) such that $\mathcal{A} \leq \mathcal{U}$. Then $\mathcal{A}\bar{q}(1_X - \mathcal{U})$ and $1_X - \mathcal{U}$ is a F α -CS in X. By hypothesis, $int(cl(\mathcal{A}))\bar{q}(1_X - \mathcal{U})$ implies $int(cl(\mathcal{A})) \leq \mathcal{U}$. Hence, \mathcal{A} is a F α^m -CS in X.

Theorem 3.16: Let x_{λ} and \mathcal{A} be a fuzzy point and a fuzzy set respectively in a fts (X, τ) . Then $x_{\lambda} \in \alpha^{m}$ - $cl(\mathcal{A})$ iff every $F\alpha^{m}$ -q-nhd of x_{λ} is q-coincident with \mathcal{A} .

Proof: Let $x_{\lambda} \in \alpha^{m}$ - $cl(\mathcal{A})$. Suppose there exists a $F\alpha^{m}$ -q-nhd \mathcal{M} of x_{λ} such that $\mathcal{M}\bar{q}\mathcal{A}$. Since \mathcal{M} is a $F\alpha^{m}$ -q-nhd of x_{λ} , there exists a $F\alpha^{m}$ -OS \mathcal{N} in X such that $x_{\lambda}q\mathcal{N} \leq \mathcal{M}$ which gives that $\mathcal{N}\bar{q}\mathcal{A}$ and hence $\mathcal{A} \leq 1_{X} - \mathcal{N}$. Then α^{m} - $cl(\mathcal{A}) \leq 1_{X} - \mathcal{N}$, as $1_{X} - \mathcal{N}$ is a $F\alpha^{m}$ -CS. Since $x_{\lambda} \notin 1_{X} - \mathcal{N}$, we have $x_{\lambda} \notin \alpha^{m}$ - $cl(\mathcal{A})$, a contradiction. Thus every $F\alpha^{m}$ -q-nhd of x_{λ} is q-coincident with \mathcal{A} .

Conversely, suppose $x_{\lambda} \notin \alpha^m - cl(\mathcal{A})$. Then there exists a $F\alpha^m$ -CS \mathcal{B} such that $\mathcal{A} \leq \mathcal{B}$ and $x_{\lambda} \notin \mathcal{B}$. Then we have $x_{\lambda}q(1_X - \mathcal{B})$ and $\mathcal{A}\bar{q}(1_X - \mathcal{B})$, a contradiction. Hence $x_{\lambda} \in g\alpha g - cl(\mathcal{A})$.

Theorem 3.17: Let \mathcal{A} and \mathcal{B} be two fuzzy sets in a fts (X, τ) . Then the following are true:

(i) $\alpha^{m} - cl(0_{X}) = 0_{X}, \alpha^{m} - cl(1_{X}) = 1_{X}.$ (ii) $\alpha^{m} - cl(\mathcal{A})$ is a $F\alpha^{m}$ -CS in X. (iii) $\alpha^{m} - cl(\mathcal{A}) \leq \alpha^{m} - cl(\mathcal{B})$ when $\mathcal{A} \leq \mathcal{B}.$ (iv) $\mathcal{M}q\mathcal{A}$ iff $\mathcal{M}q\alpha^{m} - cl(\mathcal{A})$, when \mathcal{M} is a $F\alpha^{m}$ -OS in X. (v) $\alpha^{m} - cl(\mathcal{A}) = \alpha^{m} - cl(\alpha^{m} - cl(\mathcal{A})).$

Proof: (i) and (ii) are obvious.

(iii) Let $x_{\lambda} \notin \alpha^{m} - cl(\mathcal{B})$. By theorem (3.16), there is a $F\alpha^{m} - q$ -nhd \mathcal{N} of a fuzzy point x_{λ} such that $\mathcal{N}\bar{q}\mathcal{B}$, so there is a $F\alpha^{m} - OS \mathcal{M}$ such that $x_{\lambda}q\mathcal{M} \leq \mathcal{N}$ and $\mathcal{M}\bar{q}\mathcal{B}$. Since $\mathcal{A} \leq \mathcal{B}$, then $\mathcal{M}\bar{q}\mathcal{A}$. Hence $x_{\lambda} \notin \alpha^{m} - cl(\mathcal{A})$ by theorem (3.16). Thus $\alpha^{m} - cl(\mathcal{A}) \leq \alpha^{m} - cl(\mathcal{B})$.

(iv) Let \mathcal{M} be a $F\alpha^m$ -OS in X. Suppose that $\mathcal{M}\bar{q}\mathcal{A}$, then $\mathcal{A} \leq 1_X - \mathcal{M}$. Since $1_X - \mathcal{M}$ is a $F\alpha^m$ -CS and by a part (iii), α^m - $cl(\mathcal{A}) \leq \alpha^m$ - $cl(1_X - \mathcal{M}) = 1_X - \mathcal{M}$. Hence, $\mathcal{M}\bar{q}\alpha^m$ - $cl(\mathcal{A})$.

Conversely, suppose that $\mathcal{M}\bar{q}\alpha^m$ - $cl(\mathcal{A})$. Then α^m - $cl(\mathcal{A}) \leq 1_X - \mathcal{M}$. Since $\mathcal{A} \leq \alpha^m$ - $cl(\mathcal{A})$, we have $\mathcal{A} \leq 1_X - \mathcal{M}$. Hence $\mathcal{M}\bar{q}\mathcal{A}$.

(v) Since $\alpha^m - cl(\mathcal{A}) \leq \alpha^m - cl(\alpha^m - cl(\mathcal{A}))$. We prove that $\alpha^m - cl(\alpha^m - cl(\mathcal{A})) \leq \alpha^m - cl(\mathcal{A})$. Suppose that $x_{\lambda} \notin \alpha^m - cl(\mathcal{A})$. Then by theorem (3.16), there exists a $F\alpha^m - q$ -nhd \mathcal{N} of a fuzzy point x_{λ} such that $\mathcal{N}\bar{q}\mathcal{A}$ and so there is a $F\alpha^m - oS \mathcal{M}$ in X such that $x_{\lambda}q\mathcal{M} \leq \mathcal{N}$ and $\mathcal{M}\bar{q}\mathcal{A}$. By a part (iv), $\mathcal{M}\bar{q}\alpha^m - cl(\mathcal{A})$. Then by theorem (3.16), $x_{\lambda} \notin \alpha^m - cl(\alpha^m - cl(\mathcal{A}))$. Thus $\alpha^m - cl(\alpha^m - cl(\mathcal{A})) \leq \alpha^m - cl(\mathcal{A})$. Hence $\alpha^m - cl(\mathcal{A}) = \alpha^m - cl(\alpha^m - cl(\mathcal{A}))$.

Theorem 3.18: Let \mathcal{A} and \mathcal{B} be two fuzzy sets in a fts (X, τ) . Then the following are true: (i) $\alpha^{m} \operatorname{-int}(0_{X}) = 0_{X}, \alpha^{m} \operatorname{-int}(1_{X}) = 1_{X}$. (ii) $\alpha^{m} \operatorname{-int}(\mathcal{A})$ is a $\operatorname{F}\alpha^{m} \operatorname{-OS}$ in X. (iii) $\alpha^{m} \operatorname{-int}(\mathcal{A}) \leq \alpha^{m} \operatorname{-int}(\mathcal{A})$ when $\mathcal{A} \leq \mathcal{B}$. (iv) $\alpha^{m} \operatorname{-int}(\mathcal{A}) = \alpha^{m} \operatorname{-int}(\alpha^{m} \operatorname{-int}(\mathcal{A}))$.

Proof: Obvious.

Remark 3.19: The following are the implications of a F α^m -CS and the reverse is not true.

4. FUZZY α^m -KERNEL AND FUZZY α^m - R_i -SPACES, i = 0, 1, 2, 3

Definition 4.1: The intersection of all $F\alpha^m$ -open subset of *X* containing \mathcal{M} is called the fuzzy α^m -kernel of \mathcal{M} (briefly α^m -ker(\mathcal{M})), this means α^m -ker(\mathcal{M}) = $\land \{\mathcal{U} \in F\alpha^m \cdot O(X) : \mathcal{M} \leq \mathcal{U}\}.$

Definition 4.2: In a fts (X, τ) , a fuzzy set \mathcal{M} is said to be weakly ultra fuzzy α^m -separated from \mathcal{N} if there exists a $F\alpha^m$ -OS \mathcal{U} such that $\mathcal{U} \wedge \mathcal{N} = 0_X$ or $\mathcal{M} \wedge \alpha^m$ - $cl(\mathcal{N}) = 0_X$.

By definition (4.2), we have the following: For every two distinct fuzzy points x_{λ} and y_{σ} of X, (i) $\alpha^m - cl(\{x_{\lambda}\}) = \{y_{\sigma} : \{y_{\sigma}\}$ is not weakly ultra fuzzy α^m -separated from $\{x_{\lambda}\}$. (ii) $\alpha^m - ker(\{x_{\lambda}\}) = \{y_{\sigma} : \{x_{\lambda}\}$ is not weakly ultra fuzzy α^m -separated from $\{y_{\sigma}\}$.

Corollary 4.3: Let (X, τ) be a fts, then $y_{\sigma} \in \alpha^m$ -ker $(\{x_{\lambda}\})$ iff $x_{\lambda} \in \alpha^m$ -cl $(\{y_{\sigma}\})$ for each $x \neq y \in X$.

Proof: Suppose that $y_{\sigma} \notin \alpha^{m}$ -ker($\{x_{\lambda}\}$). Then there exists a F α^{m} -OS \mathcal{U} containing x_{λ} such that $y_{\sigma} \notin \mathcal{U}$. Therefore, we have $x_{\lambda} \notin \alpha^{m}$ -cl($\{y_{\sigma}\}$). The converse part can be proved in a similar way.

Definition 4.4: A fts (X, τ) is called fuzzy $\alpha^m - R_0$ -space (F $\alpha^m - R_0$ -space, for short) if for each F α^m -OS \mathcal{U} and $x_{\lambda} \in \mathcal{U}$, then $\alpha^m - cl(\{x_{\lambda}\}) \leq \mathcal{U}$.

Definition 4.5: A fts (X, τ) is called fuzzy $\alpha^m \cdot R_1$ -space ($F\alpha^m \cdot R_1$ -space, for short) if for each two distinct fuzzy points x_λ and y_σ of X with $\alpha^m \cdot cl(\{x_\lambda\}) \neq \alpha^m \cdot cl(\{y_\sigma\})$, there exist disjoint $F\alpha^m \cdot OS \ \mathcal{U}, \mathcal{V}$ such that $\alpha^m \cdot cl(\{x_\lambda\}) \leq \mathcal{U}$ and $\alpha^m \cdot cl(\{y_\sigma\}) \leq \mathcal{V}$.

Theorem 4.6: Let (X, τ) be a fts. Then (X, τ) is $F\alpha^m \cdot R_0$ -space iff $\alpha^m \cdot cl(\{x_\lambda\}) = \alpha^m \cdot ker(\{x_\lambda\})$, for each $x \in X$.

Proof: Let (X, τ) be a $F\alpha^m \cdot R_0$ -space. If $\alpha^m \cdot cl(\{x_\lambda\}) \neq \alpha^m \cdot ker(\{x_\lambda\})$, for each $x \in X$, then there exist another fuzzy point $y \neq x$ such that $y_\sigma \in \alpha^m \cdot cl(\{x_\lambda\})$ and $y_\sigma \notin \alpha^m \cdot ker(\{x_\lambda\})$ this means there exist an \mathcal{U}_{x_λ} $F\alpha^m \cdot OS$, $y_\sigma \notin \mathcal{U}_{x_\lambda}$ implies $\alpha^m \cdot cl(\{x_\lambda\}) \leq \mathcal{U}_{x_\lambda}$ this contradiction. Thus $\alpha^m \cdot cl(\{x_\lambda\}) = \alpha^m \cdot ker(\{x_\lambda\})$.

Conversely, let $\alpha^m - cl(\{x_\lambda\}) = \alpha^m - ker(\{x_\lambda\})$, for each $F\alpha^m - OS \ \mathcal{U}, x_\lambda \in \mathcal{U}$, then $\alpha^m - ker(\{x_\lambda\}) = \alpha^m - cl(\{x_\lambda\}) \leq \mathcal{U}$ [by definition (4.1)]. Hence by definition (4.4), (X, τ) is a $F\alpha^m - R_0$ -space.

Theorem 4.7: A fts (X, τ) is an $F\alpha^m - R_0$ -space iff for each $\mathcal{A} F\alpha^m$ -CS and $x_{\lambda} \in \mathcal{A}$, then $\alpha^m - ker(\{x_{\lambda}\}) \leq \mathcal{A}$.

Proof: Let for each \mathcal{A} $F\alpha^m$ -CS and $x_{\lambda} \in \mathcal{A}$, then α^m -ker $(\{x_{\lambda}\}) \leq \mathcal{A}$ and let \mathcal{U} be a $F\alpha^m$ -OS, $x_{\lambda} \in \mathcal{U}$ then for each $y_{\sigma} \notin \mathcal{U}$ implies $y_{\sigma} \in \mathcal{U}^c$ is a $F\alpha^m$ -CS implies α^m -ker $(\{y_{\sigma}\}) \leq \mathcal{U}^c$ [by assumption]. Therefore $x_{\lambda} \notin \alpha^m$ -ker $(\{y_{\sigma}\})$ implies $y_{\sigma} \notin \alpha^m$ -cl $(\{x_{\lambda}\})$ [by corollary (4.3)]. So α^m -cl $(\{x_{\lambda}\}) \leq \mathcal{U}$. Thus (X, τ) is an $F\alpha^m$ -R₀-space.

Conversely, let (X, τ) be a $F\alpha^m \cdot R_0$ -space and \mathcal{A} be a $F\alpha^m \cdot CS$ and $x_{\lambda} \in \mathcal{A}$. Then for each $y_{\sigma} \notin \mathcal{A}$ implies $y_{\sigma} \in \mathcal{A}^c$ is a $F\alpha^m \cdot OS$, then $\alpha^m \cdot cl(\{y_{\sigma}\}) \leq \mathcal{A}^c$ [since (X, τ) is a $F\alpha^m \cdot R_0$ -space], so $\alpha^m \cdot ker(\{x_{\lambda}\}) = \alpha^m \cdot cl(\{x_{\lambda}\})$. Thus $\alpha^m \cdot ker(\{x_{\lambda}\}) \leq \mathcal{A}$.

Corollary 4.8: A fts (X, τ) is $F\alpha^m \cdot R_0$ -space iff for each $\mathcal{U} F\alpha^m \cdot OS$ and $x_\lambda \in \mathcal{U}$, then $\alpha^m \cdot cl(\alpha^m \cdot ker(\{x_\lambda\})) \leq \mathcal{U}$.

Proof: Clearly.

Theorem 4.9: Every $F\alpha^m - R_1$ -space is a $F\alpha^m - R_0$ -space.

Proof: Let (X, τ) be a $F\alpha^m - R_1$ -space and let \mathcal{U} be a $F\alpha^m - OS$, $x_{\lambda} \in \mathcal{U}$, then for each $y_{\sigma} \notin \mathcal{U}$ implies $y_{\sigma} \in \mathcal{U}^c$ is a $F\alpha^m - CS$ and $\alpha^m - cl(\{y_{\sigma}\}) \leq \mathcal{U}^c$ implies $\alpha^m - cl(\{x_{\lambda}\}) \neq \alpha^m - cl(\{y_{\sigma}\})$. Hence by definition (4.5), $\alpha^m - cl(\{x_{\lambda}\}) \leq \mathcal{U}$. Thus (X, τ) is a $F\alpha^m - R_0$ -space.

Theorem 4.10: A fts (X, τ) is $F\alpha^m \cdot R_1$ -space iff for each $x \neq y \in X$ with $\alpha^m \cdot ker(\{x_\lambda\}) \neq \alpha^m \cdot ker(\{y_\sigma\})$, then there exist $F\alpha^m \cdot CS \ \mathcal{A}_1, \ \mathcal{A}_2$ such that $\alpha^m \cdot ker(\{x_\lambda\}) \leq \mathcal{A}_1, \ \alpha^m \cdot ker(\{x_\lambda\}) \wedge \mathcal{A}_2 = 0_X$ and $\alpha^m \cdot ker(\{y_\sigma\}) \leq \mathcal{A}_2, \ \alpha^m \cdot ker(\{y_\sigma\}) \wedge \mathcal{A}_1 = 0_X$ and $\mathcal{A}_1 \lor \mathcal{A}_2 = 1_X$.

Proof: Let (X, τ) be a $F\alpha^m \cdot R_1$ -space. Then for each $x \neq y \in X$ with $\alpha^m \cdot ker(\{x_\lambda\}) \neq \alpha^m \cdot ker(\{y_\sigma\})$. Since every $F\alpha^m \cdot R_1$ -space is a $F\alpha^m \cdot R_0$ -space [by theorem (4.9)], and by theorem (4.6), $\alpha^m \cdot cl(\{x_\lambda\}) \neq \alpha^m \cdot cl(\{y_\sigma\})$, then there exist $F\alpha^m \cdot OS \ \mathcal{U}_1, \mathcal{U}_2$ such that $\alpha^m \cdot cl(\{x_\lambda\}) \leq \mathcal{U}_1$ and $\alpha^m \cdot cl(\{y_\sigma\}) \leq \mathcal{U}_2$ and $\mathcal{U}_1 \wedge \mathcal{U}_2 = \mathcal{O}_X$ [since (X, τ) is a $F\alpha^m \cdot R_1$ -space], then \mathcal{U}_1^c and \mathcal{U}_2^c are $F\alpha^m \cdot CS$ such that $\mathcal{U}_1^c \vee \mathcal{U}_2^c = \mathbb{1}_X$. Put $\mathcal{A}_1 = \mathcal{U}_1^c$ and $\mathcal{A}_2 = \mathcal{U}_2^c$. Thus $x_\lambda \in \mathcal{U}_1 \leq \mathcal{A}_2$ and $y_\sigma \in \mathcal{U}_2 \leq \mathcal{A}_1$ so that $\alpha^m \cdot ker(\{x_\lambda\}) \leq \mathcal{U}_1 \leq \mathcal{A}_2$ and $\alpha^m \cdot ker(\{y_\sigma\}) \leq \mathcal{U}_2 \leq \mathcal{A}_1$.

Conversely, let for each $x \neq y \in X$ with $\alpha^m \cdot ker(\{x_\lambda\}) \neq \alpha^m \cdot ker(\{y_\sigma\})$, there exist $F\alpha^m \cdot CS \ \mathcal{A}_1, \ \mathcal{A}_2$ such that $\alpha^m \cdot ker(\{x_\lambda\}) \leq \mathcal{A}_1, \ \alpha^m \cdot ker(\{x_\lambda\}) \wedge \mathcal{A}_2 = 0_X$ and $\alpha^m \cdot ker(\{y_\sigma\}) \leq \mathcal{A}_2, \ \alpha^m \cdot ker(\{y_\sigma\}) \wedge \mathcal{A}_1 = 0_X$ and $\mathcal{A}_1 \vee \mathcal{A}_2 = 1_X$, then \mathcal{A}_1^c and \mathcal{A}_2^c are $F\alpha^m \cdot OS$ such that $\mathcal{A}_1^c \wedge \mathcal{A}_2^c = 0_X$. Put $\mathcal{A}_1^c = \mathcal{U}_2$ and $\mathcal{A}_2^c = \mathcal{U}_1$. Thus, $\alpha^m \cdot ker(\{x_\lambda\}) \leq \mathcal{U}_1$ and $\alpha^m \cdot ker(\{y_\sigma\}) \leq \mathcal{U}_2$ and $\mathcal{U}_1 \wedge \mathcal{U}_2 = 0_X$, so that $x_\lambda \in \mathcal{U}_1$ and $y_\sigma \in \mathcal{U}_2$ implies $x_\lambda \notin \alpha^m \cdot cl(\{y_\sigma\})$ and $y_\sigma \notin \alpha^m \cdot cl(\{x_\lambda\})$, then $\alpha^m \cdot cl(\{x_\lambda\}) \leq \mathcal{U}_1$ and $\alpha^m \cdot cl(\{y_\sigma\}) \leq \mathcal{U}_2$. Thus, (X, τ) is a $F\alpha^m \cdot R_1$ -space.

Corollary 4.11: A fts (X, τ) is $F\alpha^m \cdot R_1$ -space iff for each $x \neq y \in X$ with $\alpha^m \cdot cl(\{x_\lambda\}) \neq \alpha^m \cdot cl(\{y_\sigma\})$ there exist disjoint $F\alpha^m \cdot OS \ \mathcal{U}, \mathcal{V}$ such that $\alpha^m \cdot cl(\alpha^m \cdot ker(\{x_\lambda\})) \leq \mathcal{U}$ and $\alpha^m \cdot cl(\alpha^m \cdot ker(\{y_\sigma\})) \leq \mathcal{V}$.

Proof: Let (X, τ) be a $F\alpha^m \cdot R_1$ -space and let $x \neq y \in X$ with $\alpha^m \cdot cl(\{x_\lambda\}) \neq \alpha^m \cdot cl(\{y_\sigma\})$, then there exist disjoint $F\alpha^m \cdot OS(\mathcal{U}, \mathcal{V})$ such that $\alpha^m \cdot cl(\{x_\lambda\}) \leq \mathcal{U}$ and $\alpha^m \cdot cl(\{y_\sigma\}) \leq \mathcal{V}$. Also (X, τ) is $F\alpha^m \cdot R_0$ -space [by theorem (4.9)] implies for each $x \in X$, then $\alpha^m \cdot cl(\{x_\lambda\}) = \alpha^m \cdot ker(\{x_\lambda\})$ [by theorem (4.6)], but $\alpha^m \cdot cl(\{x_\lambda\}) = \alpha^m \cdot cl(\{x_\lambda\}) =$

Conversely, let for each $x \neq y \in X$ with $\alpha^m - cl(\{x_\lambda\}) \neq \alpha^m - cl(\{y_\sigma\})$ there exist disjoint $F\alpha^m - OS \ \mathcal{U}, \mathcal{V}$ such that $\alpha^m - cl(\alpha^m - ker(\{x_\lambda\})) \leq \mathcal{U}$ and $\alpha^m - cl(\alpha^m - ker(\{y_\sigma\})) \leq \mathcal{V}$. Since $\{x_\lambda\} \leq \alpha^m - ker(\{x_\lambda\})$, then $\alpha^m - cl(\{x_\lambda\}) \leq \alpha^m - cl(\alpha^m - ker(\{x_\lambda\}))$ for each $x \in X$. So we get $\alpha^m - cl(\{x_\lambda\}) \leq \mathcal{U}$ and $\alpha^m - cl(\{y_\sigma\}) \leq \mathcal{V}$. Thus, (X, τ) is a $F\alpha^m - R_1$ -space.

Definition 4.12: Let (X, τ) be a fts. Then X is called:

(i) fuzzy α^m -regular space (F $\alpha^m r$ -space, for short), if for each fuzzy point x_{λ} and each F α^m -CS \mathcal{F} such that $x_{\lambda} \in 1_X - \mathcal{F}$, there exist disjoint F α^m -OS \mathcal{U} and \mathcal{V} such that $x_{\lambda} \in \mathcal{U}$ and $\mathcal{F} \leq \mathcal{V}$.

(ii) fuzzy α^m -normal space (F $\alpha^m n$ -space, for short) iff for each pair of disjoint F α^m -CS \mathcal{A} and \mathcal{B} , there exist disjoint F α^m -OS \mathcal{U} and \mathcal{V} such that $\mathcal{A} \leq \mathcal{U}$ and $\mathcal{B} \leq \mathcal{V}$.

(iii) fuzzy $\alpha^m R_2$ -space (F $\alpha^m R_2$ -space, for short) if it is property F $\alpha^m r$ -space.

(iv) fuzzy $\alpha^m - R_3$ -space (F $\alpha^m - R_3$ -space, for short) iff it is F $\alpha^m - R_1$ -space and F $\alpha^m n$ -space.

Example 4.13: Consider the fts (X, τ) of example (3.2). Then (X, τ) is a F $\alpha^m r$ -space and F $\alpha^m n$ -space.

Remark 4.14: Every $F\alpha^m - R_k$ -space is a $F\alpha^m - R_{k-1}$ -space, k = 2,3.

Proof: Clearly.

Theorem 4.15: A fts (X, τ) is $F\alpha^m r$ -space $(F\alpha^m \cdot R_2 \cdot space)$ iff for each $F\alpha^m \cdot closed$ subset \mathcal{A} of X and $x_\lambda \notin \mathcal{A}$ with $\alpha^m \cdot ker(\mathcal{A}) \neq \alpha^m \cdot ker(\{x_\lambda\})$ then there exist $F\alpha^m \cdot CS \mathcal{F}_1, \mathcal{F}_2$ such that $\alpha^m \cdot ker(\mathcal{A}) \leq \mathcal{F}_1, \alpha^m \cdot ker(\mathcal{A}) \wedge \mathcal{F}_2 = 0_X$ and $\alpha^m \cdot ker(\{x_\lambda\}) \leq \mathcal{F}_2, \alpha^m \cdot ker(\{x_\lambda\}) \wedge \mathcal{F}_1 = 0_X$ and $\mathcal{F}_1 \vee \mathcal{F}_2 = 1_X$.

Proof: Let (X, τ) be a $F\alpha^m r$ -space $(F\alpha^m - R_2$ -space) and let \mathcal{A} be a $F\alpha^m$ -CS, $x_\lambda \notin \mathcal{A}$, then there exist disjoint $F\alpha^m$ -OS \mathcal{U}, \mathcal{V} such that $\mathcal{A} \leq \mathcal{U}$, $x_\lambda \in \mathcal{V}$ and $\mathcal{U} \wedge \mathcal{V} = 0_X$, then \mathcal{U}^c and \mathcal{V}^c are $F\alpha^m$ -CS such that $\mathcal{U}^c \vee \mathcal{V}^c = 1_X$.

Put $\mathcal{F}_2 = \mathcal{U}^c$ and $\mathcal{F}_1 = \mathcal{V}^c$, so we get $\alpha^m \cdot ker(\mathcal{A}) \leq \mathcal{U} \leq \mathcal{F}_1$, $\alpha^m \cdot ker(\mathcal{A}) \wedge \mathcal{F}_2 = 0_X$ and $\alpha^m \cdot ker(\{x_\lambda\}) \leq \mathcal{V} \leq \mathcal{F}_2$, $\alpha^m \cdot ker(\{x_\lambda\}) \wedge \mathcal{F}_1 = 0_X$ and $\mathcal{F}_1 \vee \mathcal{F}_2 = 1_X$.

Conversely, let for each $F\alpha^m$ -closed subset \mathcal{A} of X and $x_{\lambda} \notin \mathcal{A}$ with α^m -ker $(\mathcal{A}) \neq \alpha^m$ -ker $(\{x_{\lambda}\})$, then there exist $F\alpha^m$ -CS $\mathcal{F}_1, \mathcal{F}_2$ such that α^m -ker $(\mathcal{A}) \leq \mathcal{F}_1$, α^m -ker $(\mathcal{A}) \wedge \mathcal{F}_2 = 0_X$ and α^m -ker $(\{x_{\lambda}\}) \leq \mathcal{F}_2$, α^m -ker $(\{x_{\lambda}\}) \wedge \mathcal{F}_1 = 0_X$ and $\mathcal{F}_1 \vee \mathcal{F}_2 = 1_X$. Then \mathcal{F}_1^c and \mathcal{F}_2^c are $F\alpha^m$ -OS such that $\mathcal{F}_1^c \wedge \mathcal{F}_2^c = 0_X$ and α^m -ker $(\mathcal{A}) \wedge \mathcal{F}_1^c = 0_X$, α^m -ker $(\{x_{\lambda}\}) \wedge \mathcal{F}_2^c = 0_X$. So that $\mathcal{A} \leq \mathcal{F}_2^c$ and $x_{\lambda} \in \mathcal{F}_1^c$. Thus, (X, τ) is a $F\alpha^m$ -space ($F\alpha^m$ - R_2 -space).

Lemma 4.16: Let (X, τ) be a $F\alpha^m r$ -space and \mathcal{F} be a $F\alpha^m$ -CS. Then α^m -ker $(\mathcal{F}) = \mathcal{F} = \alpha^m$ -cl (\mathcal{F}) .

Proof: Let (X, τ) be a $F\alpha^m r$ -space and \mathcal{F} be a $F\alpha^m$ -CS. Then for each $x_\lambda \notin \mathcal{F}$, there exist disjoint $F\alpha^m$ -OS \mathcal{U}, \mathcal{V} such that $\mathcal{F} \leq \mathcal{U}$ and $x_\lambda \in \mathcal{V}$. Since $\alpha^m \cdot ker(\mathcal{F}) \leq \mathcal{U}$, implies $\alpha^m \cdot ker(\mathcal{F}) \wedge \mathcal{V} = 0_X$, thus $x_\lambda \notin \alpha^m \cdot cl(\alpha^m \cdot ker(\mathcal{F}))$. We showing that if $x_\lambda \notin \mathcal{F}$ implies $x_\lambda \notin \alpha^m \cdot cl(\alpha^m \cdot ker(\mathcal{F}))$, therefore $\alpha^m \cdot cl(\alpha^m \cdot ker(\mathcal{F})) \leq \mathcal{F} = \alpha^m \cdot cl(\mathcal{F})$. As $\alpha^m \cdot cl(\mathcal{F}) = \mathcal{F} \leq \alpha^m \cdot ker(\mathcal{F})$ [by definition (4.1)]. Thus, $\alpha^m \cdot ker(\mathcal{F}) = \mathcal{F} = \alpha^m \cdot cl(\mathcal{F})$.

Theorem 4.17: A fts (X, τ) is $F\alpha^m r$ -space $(F\alpha^m \cdot R_2 \cdot \text{space})$ iff for each $F\alpha^m \cdot \text{closed}$ subset \mathcal{F} of X and $x_\lambda \notin \mathcal{F}$ with $\alpha^m \cdot cl(\alpha^m \cdot ker(\mathcal{F})) \neq \alpha^m \cdot cl(\alpha^m \cdot ker(\{x_\lambda\}))$, then there exist disjoint $F\alpha^m \cdot \text{OS } \mathcal{U}, \mathcal{V}$ such that $\alpha^m \cdot cl(\alpha^m \cdot ker(\mathcal{F})) \leq \mathcal{U}$ and $\alpha^m \cdot cl(\alpha^m \cdot ker(\{x_\lambda\})) \leq \mathcal{V}$.

Proof: Let (X, τ) be a $F\alpha^m r$ -space $(F\alpha^m R_2$ -space) and let \mathcal{F} be a $F\alpha^m$ -CS, $x_{\lambda} \notin \mathcal{F}$. Then there exist disjoint $F\alpha^m$ -OS \mathcal{U}, \mathcal{V} such that $\mathcal{F} \leq \mathcal{U}$ and $x_{\lambda} \in \mathcal{V}$. By lemma (4.16), $\alpha^m - cl(\alpha^m - ker(\mathcal{F})) = \alpha^m - cl(\mathcal{F}) = \mathcal{F}$, in the other hand (X, τ) is a $F\alpha^m - R_0$ -space [by theorem (4.9) and remark (4.14)]. Hence, by theorem (4.6), $\alpha^m - cl(\{x_{\lambda}\}) = \alpha^m - ker(\{x_{\lambda}\})$, for each $x \in X$. Thus, $\alpha^m - cl(\alpha^m - ker(\mathcal{F})) \leq \mathcal{U}$ and $\alpha^m - cl(\alpha^m - ker(\{x_{\lambda}\})) \leq \mathcal{V}$.

Conversely, let for each $F\alpha^m$ -CS \mathcal{F} and $x_{\lambda} \notin \mathcal{F}$ with α^m - $cl(\alpha^m$ - $ker(\mathcal{F})) \neq \alpha^m$ - $cl(\alpha^m$ - $ker(\{x_{\lambda}\}))$, then there exist disjoint $F\alpha^m$ -OS \mathcal{U}, \mathcal{V} such that α^m - $cl(\alpha^m$ - $ker(\mathcal{F})) \leq \mathcal{U}$ and α^m - $cl(\alpha^m$ - $ker(\{x_{\lambda}\})) \leq \mathcal{V}$. Then $\mathcal{F} \leq \mathcal{U}$ and $x_{\lambda} \in \mathcal{V}$. Thus, (X, τ) is a $F\alpha^m r$ -space ($F\alpha^m$ - R_2 -space).

Theorem 4.18: A fts (X, τ) is $F\alpha^m n$ -space iff for each disjoint $F\alpha^m$ -CS \mathcal{A}, \mathcal{B} with α^m -ker $(\mathcal{A}) \neq \alpha^m$ -ker (\mathcal{B}) then there exist $F\alpha^m$ -CS $\mathcal{F}_1, \mathcal{F}_2$ such that α^m -ker $(\mathcal{A}) \leq \mathcal{F}_1, \alpha^m$ -ker $(\mathcal{A}) \wedge \mathcal{F}_2 = 0_X$ and α^m -ker $(\mathcal{B}) \leq \mathcal{F}_2, \alpha^m$ -ker $(\mathcal{B}) \wedge \mathcal{F}_1 = 0_X$ and $\mathcal{F}_1 \vee \mathcal{F}_2 = 1_X$.

Proof: Let (X, τ) be a $F\alpha^m n$ -space and let for each disjoint $F\alpha^m$ -CS \mathcal{A}, \mathcal{B} with α^m -ker $(\mathcal{A}) \neq \alpha^m$ -ker (\mathcal{B}) then there exist disjoint $F\alpha^m$ -OS \mathcal{U}, \mathcal{V} such that $\mathcal{A} \leq \mathcal{U}$ and $\mathcal{B} \leq \mathcal{V}$ and $\mathcal{U} \wedge \mathcal{V} = 0_X$, then \mathcal{U}^c and \mathcal{V}^c are $F\alpha^m$ -CS such that $\mathcal{U}^c \vee \mathcal{V}^c = 1_X$ and α^m -ker $(\mathcal{A}) \wedge \mathcal{U}^c = 0_X$, α^m -ker $(\mathcal{B}) \wedge \mathcal{V}^c = 0_X$ Put $\mathcal{U}^c = \mathcal{F}_2$ and $\mathcal{V}^c = \mathcal{F}_1$. Thus, α^m -ker $(\mathcal{A}) \leq \mathcal{F}_1, \alpha^m$ -ker $(\mathcal{A}) \wedge \mathcal{F}_2 = 0_X$ and α^m -ker $(\mathcal{B}) \leq \mathcal{F}_2, \alpha^m$ -ker $(\mathcal{B}) \wedge \mathcal{F}_1 = 0_X$.

Conversely, let for each disjoint $F\alpha^m$ -CS \mathcal{A},\mathcal{B} with α^m -ker(\mathcal{A}) $\neq \alpha^m$ -ker(\mathcal{B}), there exist $F\alpha^m$ -CS $\mathcal{F}_1,\mathcal{F}_2$ such that α^m -ker(\mathcal{A}) $\leq \mathcal{F}_1$, α^m -ker(\mathcal{A}) $\wedge \mathcal{F}_2 = 0_X$ and α^m -ker(\mathcal{B}) $\leq \mathcal{F}_2$, α^m -ker(\mathcal{B}) $\wedge \mathcal{F}_1 = 0_X$ and $\mathcal{F}_1 \vee \mathcal{F}_2 = 1_X$ implies \mathcal{F}_1^c and \mathcal{F}_2^c are $F\alpha^m$ -OS such that $\mathcal{F}_1^c \wedge \mathcal{F}_2^c = 0_X$. Put $\mathcal{F}_1^c = \mathcal{V}$ and $\mathcal{F}_2^c = \mathcal{U}$, thus α^m -ker(\mathcal{A}) $\leq \mathcal{U}$ and α^m ker(\mathcal{B}) $\leq \mathcal{V}$, so that $\mathcal{A} \leq \mathcal{U}$ and $\mathcal{B} \leq \mathcal{V}$. Thus (X, τ) is a $F\alpha^m n$ -space.

Theorem 4.19: Every $F\alpha^m - R_3$ -space is a $F\alpha^m r$ -space.

Proof: Let \mathcal{F} be a $F\alpha^m$ -CS and $x_\lambda \notin \mathcal{F}$. Then α^m -ker $(\{x_\lambda\}) \neq \alpha^m$ -ker (\mathcal{F}) , then for each $y_\sigma \in \mathcal{F}$ there exist $F\alpha^m$ -CS $\mathcal{A}_{y_\sigma}, \mathcal{B}_{y_\sigma}$ such that α^m -ker $(\{y_\sigma\}) \leq \mathcal{A}_{y_\sigma}, \alpha^m$ -ker $(\{y_\sigma\}) \wedge \mathcal{B}_{y_\sigma} = 0_X$ and α^m -ker $(\{x_\lambda\}) \leq \mathcal{B}_{y_\sigma}, \alpha^m$ -ker $(\{x_\lambda\}) \wedge \mathcal{A}_{y_\sigma} = 0_X$ [since (X, τ) is a $F\alpha^m$ - R_1 -space and by theorem (4.10)], let $\delta = \wedge \{\mathcal{B}_{y_\sigma}: x_\lambda \in \mathcal{B}_{y_\sigma}\}$, so we have $\delta \wedge \mathcal{F} = 0_X$. Hence (X, τ) is a $F\alpha^m n$ -space, then there exist disjoint $F\alpha^m$ -OS \mathcal{U}, \mathcal{V} such that $\mathcal{F} \leq \mathcal{U}$ and $x_\lambda \in \delta \leq \mathcal{V}$. Thus, (X, τ) is a $F\alpha^m r$ -space.

5. FUZZY α^{m} - T_{i} -SPACES, j = 0, 1, 2, 3, 4

Definition 5.1: Let (X, τ) be a fts. Then X is called:

(i) fuzzy $\alpha^m - T_0$ -space (F $\alpha^m - T_0$ -space, for short) iff for each pair of distinct fuzzy points in *X*, there exists a F α^m -OS in *X* containing one and not the other.

(ii) fuzzy $\alpha^m T_1$ -space (F $\alpha^m T_1$ -space, for short) iff for each pair of distinct fuzzy points x_{λ} and y_{σ} of X, there exists F α^m -OS \mathcal{U}, \mathcal{V} containing x_{λ} and y_{σ} respectively such that $y_{\sigma} \notin \mathcal{U}$ and $x_{\lambda} \notin \mathcal{V}$.

(iii) fuzzy $\alpha^m T_2$ -space (F $\alpha^m T_2$ -space, for short) iff for each pair of distinct fuzzy points x_λ and y_σ of X, there exist disjoint F α^m -OS \mathcal{U}, \mathcal{V} in X such that $x_\lambda \in \mathcal{U}$ and $y_\sigma \in \mathcal{V}$.

(iv) fuzzy $\alpha^m - T_3$ -space (F $\alpha^m - T_3$ -space, for short) iff it is F $\alpha^m - T_1$ -space and F $\alpha^m r$ -space.

(v) fuzzy $\alpha^m - T_4$ -space (F $\alpha^m - T_4$ -space, for short) iff it is F $\alpha^m - T_1$ -space and F $\alpha^m n$ -space.

Example 5.2: Let $X = \{a, b\}$ and $\tau = \{0_X, a_1, 1_X\}$ be a fts on X. Then a_1 is a crisp point in X and (X, τ) is a $F\alpha^m T_0$ -space.

Example 5.3: Let $X = \{u, v\}$ and $\tau = \{0_X, u_1, v_1, 1_X\}$ be a fts on X. Then u_1, v_1 are crisp points in X and (X, τ) is a F α^m - T_1 -space and F α^m - T_2 -space.

Example 5.4: The discrete fuzzy topology in X = [-2,2] is a F α^m - T_3 -space and F α^m - T_4 -space.

Remark 5.5: Every $F\alpha^m T_k$ -space is a $F\alpha^m T_{k-1}$ -space, k = 1,2,3,4.

Proof: Clearly.

Theorem 5.6: A fts (X, τ) is $F\alpha^m - T_0$ -space iff either $y_\sigma \notin \alpha^m - ker(\{x_\lambda\})$ or $x_\lambda \notin \alpha^m - ker(\{y_\sigma\})$, for each $x \neq y \in X$.

Proof: Let (X, τ) be a $F\alpha^m \cdot T_0$ -space then for each $x \neq y \in X$, there exists a $F\alpha^m \cdot OS \ \mathcal{U}$ such that $x_\lambda \in \mathcal{U}, y_\sigma \notin \mathcal{U}$ or $x_\lambda \notin \mathcal{U}, y_\sigma \in \mathcal{U}$. Thus either $x_\lambda \in \mathcal{U}, y_\sigma \notin \mathcal{U}$ implies $y_\sigma \notin \alpha^m \cdot ker(\{x_\lambda\})$ or $x_\lambda \notin \mathcal{U}, y_\sigma \in \mathcal{U}$ implies $x_\lambda \notin \alpha^m \cdot ker(\{y_\sigma\})$. Conversely, let either $y_\sigma \notin \alpha^m \cdot ker(\{x_\lambda\})$ or $x_\lambda \notin \alpha^m \cdot ker(\{y_\sigma\})$, for each $x \neq y \in X$. Then there exists a $F\alpha^m \cdot OS \ \mathcal{U}$ such that $x_\lambda \in \mathcal{U}, y_\sigma \notin \mathcal{U}$ or $x_\lambda \notin \mathcal{U}, y_\sigma \in \mathcal{U}$. Thus (X, τ) is a $F\alpha^m \cdot T_0$ -space.

Theorem 5.7: A fts (X, τ) is $F\alpha^m \cdot T_0$ -space iff either $\alpha^m \cdot ker(\{x_\lambda\})$ is weakly ultra fuzzy α^m -separated from $\{y_\sigma\}$ or $\alpha^m \cdot ker(\{y_\sigma\})$ is weakly ultra fuzzy α^m -separated from $\{x_\lambda\}$ for each $x \neq y \in X$.

Proof: Let (X, τ) be a $F\alpha^m \cdot T_0$ -space then for each $x \neq y \in X$, there exists a $F\alpha^m \cdot OS \ \mathcal{U}$ such that $x_{\lambda} \in \mathcal{U}, y_{\sigma} \notin \mathcal{U}$ or $x_{\lambda} \notin \mathcal{U}, y_{\sigma} \in \mathcal{U}$. Now if $x_{\lambda} \in \mathcal{U}, y_{\sigma} \notin \mathcal{U}$ implies $\alpha^m \cdot ker(\{x_{\lambda}\})$ is weakly ultra fuzzy α^m -separated from $\{y_{\sigma}\}$. Or if $x_{\lambda} \notin \mathcal{U}, y_{\sigma} \in \mathcal{U}$ implies $\alpha^m \cdot ker(\{y_{\sigma}\})$ is weakly ultra fuzzy α^m -separated from $\{x_{\lambda}\}$.

Conversely, let either α^m -ker $(\{x_{\lambda}\})$ be weakly ultra fuzzy α^m -separated from $\{y_{\sigma}\}$ or α^m -ker $(\{y_{\sigma}\})$ be weakly ultra fuzzy α^m -separated from $\{x_{\lambda}\}$. Then there exists a F α^m -OS \mathcal{U} such that α^m -ker $(\{x_{\lambda}\}) \leq \mathcal{U}$ and $y_{\sigma} \notin \mathcal{U}$ or α^m -ker $(\{y_{\sigma}\}) \leq \mathcal{U}$, $x_{\lambda} \notin \mathcal{U}$ implies $x_{\lambda} \in \mathcal{U}$, $y_{\sigma} \notin \mathcal{U}$ or $x_{\lambda} \notin \mathcal{U}$, $y_{\sigma} \in \mathcal{U}$. Thus, (X, τ) is a F α^m - T_0 -space.

Theorem 5.8: A fts (X, τ) is $F\alpha^m T_1$ -space iff for each $x \neq y \in X$, $\alpha^m ker(\{x_\lambda\})$ is weakly ultra fuzzy α^m -separated from $\{y_\sigma\}$ and $\alpha^m ker(\{y_\sigma\})$ is weakly ultra fuzzy α^m -separated from $\{x_\lambda\}$.

Proof: Let (X, τ) be a $F\alpha^m$ - T_1 -space then for each $x \neq y \in X$, there exist $F\alpha^m$ -OS \mathcal{U}, \mathcal{V} such that $x_\lambda \in \mathcal{U}, y_\sigma \notin \mathcal{U}$ and $x_\lambda \notin \mathcal{V}, y_\sigma \in \mathcal{V}$. Implies α^m -ker($\{x_\lambda\}$) is weakly ultra fuzzy α^m -separated from $\{y_\sigma\}$ and α^m -ker($\{y_\sigma\}$) is weakly ultra fuzzy α^m -separated from $\{x_\lambda\}$.

Conversely, let α^m -ker({ x_{λ} }) be weakly ultra fuzzy α^m -separated from { y_{σ} } and α^m -ker({ y_{σ} }) be weakly ultra fuzzy α^m -separated from { x_{λ} }. Then there exist F α^m -OS \mathcal{U}, \mathcal{V} such that α^m -ker({ x_{λ} }) $\leq \mathcal{U}, y_{\sigma} \notin \mathcal{U}$ and α^m -ker({ y_{σ} }) $\leq \mathcal{V}, x_{\lambda} \notin \mathcal{V}$ implies $x_{\lambda} \in \mathcal{U}, y_{\sigma} \notin \mathcal{U}$ and $x_{\lambda} \notin \mathcal{V}, y_{\sigma} \in \mathcal{V}$. Thus, (X, τ) is a F α^m - T_1 -space.

Theorem 5.9: A fts (X, τ) is $F\alpha^m T_1$ -space iff for each $x \in X$, $\alpha^m ker(\{x_{\lambda}\}) = \{x_{\lambda}\}$.

Proof: Let (X, τ) be a $F\alpha^m T_1$ -space and let $\alpha^m ker(\{x_\lambda\}) \neq \{x_\lambda\}$. Then $\alpha^m ker(\{x_\lambda\})$ contains another fuzzy point distinct from x_λ say y_σ . So $y_\sigma \in \alpha^m ker(\{x_\lambda\})$ implies $\alpha^m ker(\{x_\lambda\})$ is not weakly ultra fuzzy α^m -separated from $\{y_\sigma\}$. Hence by theorem (5.8), (X, τ) is not a $F\alpha^m T_1$ -space this is contradiction. Thus $\alpha^m ker(\{x_\lambda\}) = \{x_\lambda\}$. Conversely, let $\alpha^m ker(\{x_\lambda\}) = \{x_\lambda\}$, for each $x \in X$ and let (X, τ) be not a $F\alpha^m T_1$ -space. Then by theorem (5.8), α^m -

Conversely, let α^{m} -ker $(\{x_{\lambda}\}) = \{x_{\lambda}\}$, for each $x \in X$ and let (X, τ) be not a F α^{m} - I_1 -space. Then by theorem (5.8), α^{m} -ker $(\{x_{\lambda}\})$ is not weakly ultra fuzzy α^{m} -separated from $\{y_{\sigma}\}$, this means that for every F α^{m} -OS \mathcal{U} contains α^{m} -ker $(\{x_{\lambda}\})$ then $y_{\sigma} \in \mathcal{U}$ implies $y_{\sigma} \in \wedge \{\mathcal{U} \in F\alpha^{m}$ - $\mathcal{O}(X): x_{\lambda} \in \mathcal{U}\}$ implies $y_{\sigma} \in \alpha^{m}$ -ker $(\{x_{\lambda}\})$, this is contradiction. Thus, (X, τ) is a F α^{m} - T_1 -space.

Theorem 5.10: A fts (X, τ) is $F\alpha^m - T_1$ -space iff for each $x \neq y \in X$, $y_\sigma \notin \alpha^m - ker(\{x_\lambda\})$ and $x_\lambda \notin \alpha^m - ker(\{y_\sigma\})$.

Proof: Let (X, τ) be a $F\alpha^m - T_1$ -space then for each $x \neq y \in X$, there exists $F\alpha^m - OS \ \mathcal{U}, \mathcal{V}$ such that $x_{\lambda} \in \mathcal{U}, y_{\sigma} \notin \mathcal{U}$ and $y_{\sigma} \in \mathcal{V}, x_{\lambda} \notin \mathcal{U}$. Implies $y_{\sigma} \notin \alpha^m - ker(\{x_{\lambda}\})$ and $x_{\lambda} \notin \alpha^m - ker(\{y_{\sigma}\})$. Conversely, let $y_{\sigma} \notin \alpha^m - ker(\{x_{\lambda}\})$ and $x_{\lambda} \notin \alpha^m - ker(\{y_{\sigma}\})$, for each $x \neq y \in X$. Then there exists $F\alpha^m - OS \ \mathcal{U}, \mathcal{V}$ such

Conversely, let $y_{\sigma} \notin \alpha^{m}$ -ker($\{x_{\lambda}\}$) and $x_{\lambda} \notin \alpha^{m}$ -ker($\{y_{\sigma}\}$), for each $x \neq y \in X$. Then there exists $F\alpha^{m}$ -OS \mathcal{U}, V such that $x_{\lambda} \in \mathcal{U}, y_{\sigma} \notin \mathcal{U}$ and $y_{\sigma} \in \mathcal{V}, x_{\lambda} \notin \mathcal{V}$. Thus, (X, τ) is a $F\alpha^{m}$ - T_{1} -space.

Theorem 5.11: A fts (X, τ) is $F\alpha^m - T_1$ -space iff for each $x \neq y \in X$ implies $\alpha^m - ker(\{x_\lambda\}) \wedge \alpha^m - ker(\{y_\sigma\}) = 0_X$.

Proof: Let (X, τ) be a $F\alpha^m T_1$ -space. Then $\alpha^m ker(\{x_\lambda\}) = \{x_\lambda\}$ and $\alpha^m ker(\{y_\sigma\}) = \{y_\sigma\}$ [by theorem (5.9)]. Thus, $\alpha^m ker(\{x_\lambda\}) \wedge \alpha^m ker(\{y_\sigma\}) = 0_X$.

Conversely, let for each $x \neq y \in X$ implies $\alpha^m \cdot ker(\{x_\lambda\}) \wedge \alpha^m \cdot ker(\{y_\sigma\}) = 0_X$ and let (X, τ) be not $F\alpha^m \cdot T_1$ -space then for each $x \neq y \in X$ implies $y_\sigma \in \alpha^m \cdot ker(\{x_\lambda\})$ or $x_\lambda \in \alpha^m \cdot ker(\{y_\sigma\})$ [by theorem (5.10)], then $\alpha^m \cdot ker(\{x_\lambda\}) \wedge \alpha^m \cdot ker(\{y_\sigma\}) \neq 0_X$ this is contradiction. Thus, (X, τ) is a $F\alpha^m \cdot T_1$ -space.

Theorem 5.12: A fts (X, τ) is $F\alpha^m - T_1$ -space iff (X, τ) is $F\alpha^m - T_0$ -space and $F\alpha^m - R_0$ -space.

Proof: Let (X, τ) be a $F\alpha^m T_1$ -space and let $x_{\lambda} \in \mathcal{U}$ be a $F\alpha^m$ -OS, then for each $x \neq y \in X$, $\alpha^m - ker(\{x_{\lambda}\}) \wedge \alpha^m - ker(\{y_{\sigma}\}) = 0_X$ [by theorem (5.11)] implies $x_{\lambda} \notin \alpha^m - ker(\{y_{\sigma}\})$ and $y_{\sigma} \notin \alpha^m - ker(\{x_{\lambda}\})$ this means $\alpha^m - cl(\{x_{\lambda}\}) = \{x_{\lambda}\}$, hence $\alpha^m - cl(\{x_{\lambda}\}) \leq \mathcal{U}$. Thus, (X, τ) is a $F\alpha^m - R_0$ -space.

Conversely, let (X, τ) be a $F\alpha^m - T_0$ -space and $F\alpha^m - R_0$ -space, then for each $x \neq y \in X$ there exists a $F\alpha^m - OS \mathcal{U}$ such that $x_{\lambda} \in \mathcal{U}, y_{\sigma} \notin \mathcal{U}$ or $x_{\lambda} \notin \mathcal{U}, y_{\sigma} \in \mathcal{U}$. Say $x_{\lambda} \in \mathcal{U}, y_{\sigma} \notin \mathcal{U}$ since (X, τ) is a $F\alpha^m - R_0$ -space, then $\alpha^m - cl(\{x_{\lambda}\}) \leq \mathcal{U}$, this means there exists a $F\alpha^m - OS \mathcal{V}$ such that $y_{\sigma} \in \mathcal{V}, x_{\lambda} \notin \mathcal{V}$. Thus, (X, τ) is a $F\alpha^m - T_1$ -space.

Theorem 5.13: A fts (X, τ) is $F\alpha^m - T_2$ -space iff (i) (X, τ) is $F\alpha^m - T_0$ -space and $F\alpha^m - R_1$ -space. (ii) (X, τ) is $F\alpha^m - T_1$ -space and $F\alpha^m - R_1$ -space.

Proof: (i) Let (X, τ) be a $F\alpha^m T_2$ -space then it is a $F\alpha^m T_0$ -space. Now since (X, τ) is a $F\alpha^m T_2$ -space then for each $x \neq y \in X$, there exist disjoint $F\alpha^m$ -OS \mathcal{U}, \mathcal{V} such that $x_{\lambda} \in \mathcal{U}$ and $y_{\sigma} \in \mathcal{V}$ implies $x_{\lambda} \notin \alpha^m - cl(\{y_{\sigma}\})$ and $y_{\alpha} \notin \alpha^m - cl(\{x_{\lambda}\})$, therefore $\alpha^m - cl(\{x_{\lambda}\}) = \{x_{\lambda}\} \leq \mathcal{U}$ and $\alpha^m - cl(\{y_{\sigma}\}) = \{y_{\sigma}\} \leq \mathcal{V}$. Thus, (X, τ) is a $F\alpha^m - R_1$ -space.

Conversely, let (X, τ) be a $F\alpha^m \cdot T_0$ -space and $F\alpha^m \cdot R_1$ -space, then for each $x \neq y \in X$, there exists a $F\alpha^m \cdot OS \ \mathcal{U}$ such that $x_{\lambda} \in \mathcal{U}, y_{\sigma} \notin \mathcal{U}$ or $y_{\sigma} \in \mathcal{U}, x_{\lambda} \notin \mathcal{U}$, implies $\alpha^m \cdot cl(\{x_{\lambda}\}) \neq \alpha^m \cdot cl(\{y_{\sigma}\})$, since (X, τ) is a $F\alpha^m \cdot R_1$ -space [by assumption], then there exist disjoint $F\alpha^m \cdot OS \ \mathcal{M}, \mathcal{N}$ such that $x_{\lambda} \in \mathcal{M}$ and $y_{\sigma} \in \mathcal{N}$. Thus, (X, τ) is a $F\alpha^m \cdot T_2$ -space.

(ii) By the same way of part (i) a $F\alpha^m - T_2$ -space is $F\alpha^m - T_1$ -space and $F\alpha^m - R_1$ -space.

Conversely, let (X, τ) be a $F\alpha^m \cdot T_1$ -space and $F\alpha^m \cdot R_1$ -space, then for each $x \neq y \in X$, there exist $F\alpha^m \cdot OS \ \mathcal{U}, \mathcal{V}$ such that $x_\lambda \in \mathcal{U}, y_\sigma \notin \mathcal{U}$ and $y_\sigma \in \mathcal{V}, x_\lambda \notin \mathcal{V}$ implies $\alpha^m \cdot cl(\{x_\lambda\}) \neq \alpha^m \cdot cl(\{y_\sigma\})$, since (X, τ) is a $F\alpha^m \cdot R_1$ -space, then there exist disjoint $F\alpha^m \cdot OS \ \mathcal{M}, \mathcal{N}$ such that $x_\lambda \in \mathcal{M}$ and $y_\sigma \in \mathcal{N}$. Thus, (X, τ) is a $F\alpha^m \cdot T_2$ -space.

Corollary 5.14: A F α^m - T_0 -space is F α^m - T_2 -space iff for each $x \neq y \in X$ with α^m - $ker(\{x_\lambda\}) \neq \alpha^m$ - $ker(\{y_\sigma\})$ then there exist F α^m -CS $\mathcal{A}_1, \mathcal{A}_2$ such that α^m - $ker(\{x_\lambda\}) \leq \mathcal{A}_1$, α^m - $ker(\{x_\lambda\}) \wedge \mathcal{A}_2 = 0_X$ and α^m - $ker(\{y_\sigma\}) \leq \mathcal{A}_2$, α^m - $ker(\{y_\sigma\}) \wedge \mathcal{A}_1 = 0_X$ and $\mathcal{A}_1 \vee \mathcal{A}_2 = 1_X$.

Proof: By theorem (4.10) and theorem (5.13).

Corollary 5.15: A F α^m - T_1 -space is F α^m - T_2 -space iff one of the following conditions holds:

(i) for each $x \neq y \in X$ with $\alpha^m - cl(\{x_\lambda\}) \neq \alpha^m - cl(\{y_\sigma\})$, then there exist $F\alpha^m - OS \ \mathcal{U}, \mathcal{V}$ such that $\alpha^m - cl(\alpha^m - ker(\{x_\lambda\})) \leq \mathcal{U}$ and $\alpha^m - cl(\alpha^m - ker(\{y_\sigma\})) \leq \mathcal{V}$.

(ii) for each $x \neq y \in X$ with $\alpha^m \cdot ker(\{x_\lambda\}) \neq \alpha^m \cdot ker(\{y_\sigma\})$, then there exist $F\alpha^m \cdot CS \mathcal{A}_1, \mathcal{A}_2$ such that $\alpha^m \cdot ker(\{x_\lambda\}) \leq \mathcal{A}_1, \alpha^m \cdot ker(\{x_\lambda\}) \wedge \mathcal{A}_2 = 0_X$ and $\alpha^m \cdot ker(\{y_\sigma\}) \leq \mathcal{A}_2, \alpha^m \cdot ker(\{y_\sigma\}) \wedge \mathcal{A}_1 = 0_X$ and $\mathcal{A}_1 \vee \mathcal{A}_2 = 1_X$.

Proof: (i) By corollary (4.11) and theorem (5.13). (ii) By theorem (4.10) and theorem (5.13).

Theorem 5.16: A F α^m - R_1 -space is F α^m - T_2 -space iff one of the following conditions holds:

(i) for each $x \in X$, α^m -ker $(\{x_{\lambda}\}) = \{x_{\lambda}\}$.

(ii) for each $x \neq y \in X$, α^m -ker $(\{x_{\lambda}\}) \neq \alpha^m$ -ker $(\{y_{\sigma}\})$ implies α^m -ker $(\{x_{\lambda}\}) \land \alpha^m$ -ker $(\{y_{\sigma}\}) = 0_X$.

(iii) for each $x \neq y \in X$, either $x_{\lambda} \notin \alpha^{m}$ -ker($\{y_{\sigma}\}$) or $y_{\sigma} \notin \alpha^{m}$ -ker($\{x_{\lambda}\}$).

(iv) for each $x \neq y \in X$, then $x_{\lambda} \notin \alpha^m$ -ker($\{y_{\sigma}\}$) and $y_{\sigma} \notin \alpha^m$ -ker($\{x_{\lambda}\}$).

Proof: (i) Let (X, τ) be a $F\alpha^m - T_2$ -space. Then (X, τ) is a $F\alpha^m - T_1$ -space and $F\alpha^m - R_1$ -space [by theorem (5.13)]. Hence by theorem (5.9), $\alpha^m - ker(\{x_\lambda\}) = \{x_\lambda\}$ for each $x \in X$.

Conversely, let for each $x \in X$, $\alpha^m \cdot ker(\{x_\lambda\}) = \{x_\lambda\}$, then by theorem (5.9), (X, τ) is a $F\alpha^m \cdot T_1$ -space. Also (X, τ) is a $F\alpha^m \cdot R_1$ -space by assumption. Hence by theorem (5.13), (X, τ) is a $F\alpha^m \cdot T_2$ -space.

(ii) Let (X, τ) be a $F\alpha^m T_2$ -space. Then (X, τ) is $F\alpha^m T_1$ -space [by remark (5.5)]. Hence by theorem (5.11), $\alpha^m ker(\{x_{\lambda}\}) \wedge \alpha^m ker(\{y_{\sigma}\}) = 0_X$ for each $x \neq y \in X$.

Conversely, assume that for each $x \neq y \in X$, $\alpha^m - ker(\{x_\lambda\}) \neq \alpha^m - ker(\{y_\sigma\})$ implies $\alpha^m - ker(\{x_\lambda\}) \wedge \alpha^m - ker(\{y_\sigma\}) = 0_X$. So by theorem (5.11), (X, τ) is a $F\alpha^m - T_1$ -space, also (X, τ) is a $F\alpha^m - R_1$ -space by assumption. Hence by theorem (5.13), (X, τ) is a $F\alpha^m - T_2$ -space.

(iii) Let (X, τ) be a $F\alpha^m T_2$ -space. Then (X, τ) is a $F\alpha^m T_0$ -space [by remark (5.5)]. Hence by theorem (5.6), either $x_\lambda \notin \alpha^m$ -ker($\{y_\sigma\}$) or $y_\sigma \notin \alpha^m$ -ker($\{x_\lambda\}$) for each $x \neq y \in X$.

Conversely, assume that for each $x \neq y \in X$, either $x_{\lambda} \notin \alpha^{m}$ -ker($\{y_{\sigma}\}$) or $y_{\sigma} \notin \alpha^{m}$ -ker($\{x_{\lambda}\}$) for each $x \neq y \in X$. So by theorem (5.6), (X, τ) is a $F\alpha^{m}$ - T_{0} -space, also (X, τ) is $F\alpha^{m}$ - R_{1} -space by assumption. Thus (X, τ) is a $F\alpha^{m}$ - T_{2} -space [by theorem (5.13)].

(iv) Let (X, τ) be a $F\alpha^m T_2$ -space. Then (X, τ) is a $F\alpha^m T_1$ -space and $F\alpha^m R_1$ -space [by theorem (5.13)]. Hence by theorem (5.10), $x_\lambda \notin \alpha^m ker(\{y_\sigma\})$ and $y_\sigma \notin \alpha^m ker(\{x_\lambda\})$.

Conversely, let for each $x \neq y \in X$ then $x_{\lambda} \notin \alpha^{m} \cdot ker(\{y_{\sigma}\})$ and $y_{\sigma} \notin \alpha^{m} \cdot ker(\{x_{\lambda}\})$. Then by theorem (5.10), (X, τ) is a $F\alpha^{m} \cdot T_{1}$ -space. Also (X, τ) is a $F\alpha^{m} \cdot R_{1}$ -space by assumption. Hence by theorem (5.13), (X, τ) is a $F\alpha^{m} \cdot T_{2}$ -space.

Remark 5.17: Each fuzzy separation axiom is defined as the conjunction of two weaker axioms: $F\alpha^m - T_k$ -space = $F\alpha^m - R_{k-1}$ -space and $F\alpha^m - T_0$ -space, k = 1, 2, 3, 4.

Theorem 5.18: Let (X, τ) be a fts and α^m -ker $(\{x_\lambda\}) = \{x_\lambda\}$ for each $x \in X$ then (X, τ) is $F\alpha^m$ - T_3 -space if and only if it is a $F\alpha^m$ - R_2 -space.

Proof: Let (X, τ) be a $F\alpha^m T_3$ -space. Then, (X, τ) is a $F\alpha^m R_2$ -space [By remark (5.17)]. Conversely, let (X, τ) be a $F\alpha^m R_2$ -space then it is a $F\alpha^m r$ -space [definition (4.12)(iii)]. By assumption, $\alpha^m ker(\{x_\lambda\}) = \{x_\lambda\}$ for each $x \in X$, then (X, τ) is a $F\alpha^m T_1$ -space [by theorem (5.9)]. Hence by remark (5.17), (X, τ) is a $F\alpha^m T_3$ -space.

Theorem 5.19: Let (X, τ) be a fts and let $x \neq y \in X$, implies $\alpha^m \cdot ker(\{x_\lambda\}) \wedge \alpha^m \cdot ker(\{y_\sigma\}) = 0_X$, then (X, τ) is a $F\alpha^m \cdot T_3$ -space iff it is a $F\alpha^m \cdot R_2$ -space.

Proof: Let (X, τ) be a $F\alpha^m - T_3$ -space. Then (X, τ) is a $F\alpha^m - R_2$ -space [by remark (5.17)]. Conversely, let (X, τ) be a $F\alpha^m - R_2$ -space then it is a $F\alpha^m r$ -space [definition (4.12)(iii)]. By assumption, $\alpha^m - ker(\{x_\lambda\}) \land \alpha^m - ker(\{y_\sigma\}) = 0_X$, for each $x \neq y \in X$, then by theorem (5.11), (X, τ) is a $F\alpha^m - T_1$ -space. Hence by remark (5.17), (X, τ) is a $F\alpha^m - T_3$ -space.

Theorem 5.20: Let (X, τ) be a fts and for each $x \neq y \in X$ either $x_{\lambda} \notin \alpha^{m} \cdot ker(\{y_{\sigma}\})$ or $y_{\sigma} \notin \alpha^{m} \cdot ker(\{x_{\lambda}\})$, then (X, τ) is a $F\alpha^{m} \cdot T_{3}$ -space iff it is a $F\alpha^{m} \cdot R_{2}$ -space.

Proof: Let (X, τ) be a $F\alpha^m - T_3$ -space. Then (X, τ) is a $F\alpha^m - R_2$ -space [by remark (5.17)].

Conversely, let (X, τ) be a $F\alpha^m R_2$ -space then it is a $F\alpha^m r$ -space [definition (4.12)(iii)]. By assumption, for each $x \neq y \in X$ either $x_\lambda \notin \alpha^m ker(\{y_\sigma\})$ or $y_\sigma \notin \alpha^m ker(\{x_\lambda\})$. This means either $\alpha^m ker(\{x_\lambda\})$ is weakly ultra fuzzy α^m -separated from $\{y_\sigma\}$ or $\alpha^m ker(\{y_\sigma\})$ is weakly ultra fuzzy α^m -separated from $\{x_\lambda\}$, so by theorem (5.7), (X, τ) is a $F\alpha^m T_0$ -space. Hence by remark (5.17), (X, τ) is a $F\alpha^m T_3$ -space.

Theorem 5.21: Let (X, τ) be a fts and let $x \neq y \in X$, then $x_{\lambda} \notin \alpha^m$ -ker $(\{y_{\sigma}\})$ and $y_{\sigma} \notin \alpha^m$ -ker $(\{x_{\lambda}\})$, (X, τ) is a F α^m - T_3 -space iff it is a F α^m - R_2 -space.

Proof: Let (X, τ) be a $F\alpha^m - T_3$ -space. Then (X, τ) is a $F\alpha^m - R_2$ -space [by remark (5.17)].

Conversely, let (X, τ) be a F α^m - R_2 -space then it is a F $\alpha^m r$ -space [definition (4.12)(iii)]. By assumption, for each $x \neq y \in X$ then $x_\lambda \notin \alpha^m$ -ker($\{y_\sigma\}$) and $y_\sigma \notin \alpha^m$ -ker($\{x_\lambda\}$). Therefore, α^m -ker($\{x_\lambda\}$) is weakly ultra fuzzy α^m -separated from $\{y_\sigma\}$ and α^m -ker($\{y_\sigma\}$) is weakly ultra fuzzy α^m -separated from $\{x_\lambda\}$, so by theorem (5.8), (X, τ) is a F α^m - T_1 -space. Hence by remark (5.17), (X, τ) is a F α^m - T_3 -space.

Remark 5.22: The relation between fuzzy α^m -separation axioms can be representing as a matrix. Therefore, the element a_{ij} refers to this relation. As the following matrix representation shows:

and	$F\alpha^m - T_0$	$F\alpha^m$ - T_1	$F\alpha^m$ - T_2	$F\alpha^m$ - T_3	$F\alpha^m$ - T_4	$F\alpha^m - R_0$	$F\alpha^m$ - R_1	$F\alpha^m$ - R_2	$F\alpha^m$ - R_3
$F\alpha^m - T_0$	$F\alpha^m - T_0$	$F\alpha^m$ - T_1	$F\alpha^m - T_2$	$F\alpha^m$ - T_3	$F\alpha^m$ - T_4	$F\alpha^m$ - T_1	$F\alpha^m$ - T_2	$F\alpha^m$ - R_3	$F\alpha^m$ - T_4
$F\alpha^m - T_1$	$F\alpha^m$ - T_1	$F\alpha^m$ - T_1	$F\alpha^m$ - T_2	$F\alpha^m$ - T_3	$F\alpha^m$ - T_4	$F\alpha^m - T_1$	$F\alpha^m$ - T_2	$F\alpha^m$ - R_3	$F\alpha^m$ - T_4
$F\alpha^m$ - T_2	$F\alpha^m$ - T_2	$F\alpha^m$ - T_2	$F\alpha^m$ - T_2	$F\alpha^m$ - T_3	$F\alpha^m$ - T_4	$F\alpha^m$ - T_2	$F\alpha^m$ - T_2	$F\alpha^m$ - R_3	$F\alpha^m$ - T_4
$F\alpha^m$ - T_3	$F\alpha^m$ - T_4	$F\alpha^m$ - T_3	$F\alpha^m$ - T_3	$F\alpha^m$ - T_3	$F\alpha^m$ - T_4				
$F\alpha^m - T_4$	$F\alpha^m$ - T_4	$F\alpha^m$ - T_4	$F\alpha^m - T_4$	$F\alpha^m$ - T_4					
$F\alpha^m - R_0$	$F\alpha^m - T_1$	$F\alpha^m$ - T_1	$F\alpha^m - T_2$	$F\alpha^m$ - T_3	$F\alpha^m$ - T_4	$F\alpha^m - R_0$	$F\alpha^m - R_1$	$F\alpha^m - R_2$	$F\alpha^m$ - R_3
$F\alpha^m - R_1$	$F\alpha^m - T_2$	$F\alpha^m$ - T_2	$F\alpha^m$ - T_2	$F\alpha^m$ - T_3	$F\alpha^m$ - T_4	$F\alpha^m - R_1$	$F\alpha^m - R_1$	$F\alpha^m - R_2$	$F\alpha^m$ - R_3
$F\alpha^m - R_2$	$F\alpha^m - T_3$	$F\alpha^m$ - T_3	$F\alpha^m - T_3$	$F\alpha^m - T_3$	$F\alpha^m$ - T_4	$F\alpha^m - R_2$	$F\alpha^m - R_2$	$F\alpha^m - R_2$	$F\alpha^m$ - R_3
$F\alpha^m - R_3$	$F\alpha^m - T_4$	$F\alpha^m$ - T_4	$F\alpha^m$ - T_4	$F\alpha^m$ - T_4	$F\alpha^m$ - T_4	$F\alpha^m - R_3$	$F\alpha^m - R_3$	$F\alpha^m - R_3$	$F\alpha^m - R_3$

Matrix Representation

The relation between fuzzy α^m -separation axioms

REFERENCES

- [1] S. Bin Shahna, "On fuzzy strong semi continuity and fuzzy pre continuity", *Fuzzy sets and system*, 44(2), (1991), 303-308.
- [2] Sikn, "On fuzzy FC Compactness", Comm. Korean Math. Soc., 13(1998), 137-150.
- [3] L. Chang, "Fuzzy topological spaces", J. Math. Anal. Appl., 24(1968), 182-190.
- [4] K. Wong, "Fuzzy points and local properties of fuzzy topology", J. Math. Anal. Appl., 46(1974), 316-328.
- [5] G. Balasubramania and P. Sundaram, "On some generalizations of fuzzy continuous functions", *Fuzzy sets and Systems*, 86(1), (1997), 93-100.
- [6] L. A. Zadeh, "Fuzzy sets", Information and control, 8 (1965), 338-353.
- [7] M. Mathew and R. Parimelazhagan, "α^m-Closed set in topological spaces", *International Journal of Mathematical Analysis*, Vol.8, No.47, (2014), 2325-2329.
- [8] P. M. Pu and Y. M. Liu, "Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore-Smith convergence", J. Math. Anal. Appl., 76(1980), 571-599.
- [9] R. K. Saraf and S. Mishra, "Fgα-closed sets", J. Tripura Math. Soc., 2(2000), 27-32.
- [10] R. K. Saraf, G. Navalagi and M. Khanna, "On fuzzy semi pre generalized closed sets", Bull. Malaysian Math. Sci. Soc., 28(1), (2005), 19-30.
- [11] S. S. Thakur and S. Singh, "On fuzzy semi pre open sets and fuzzy semi pre continuous", *Fuzzy sets and system*, 98(3), (1998), 383-391.
- [12] S. Ganguly and S. Saha, "A note on δ -continuity and δ -connected sets in fuzzy set theory", Simon Stevin, 62(1988).