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1. INTRODUCTION

In 1965 Zadeh studied the fuzzy sets (briefly F-sets) (see [6]) which plays such a role in the field of fuzzy topological
spaces (or simply fts). The fuzzy topological spaces investigated by Chang in 1968 (see [3]). A. S. Bin Shahna [1] defined
fuzzy a-closed sets. In 1997, fuzzy generalized closed set (briefly Fg-CS) was introduced by G. Balasubramania and P.
Sundaram [5]. In 2014, M. Mathew and R. Parimelazhagan [7] defined a™-closed sets of topological spaces. The aim of
this paper is to introduce a concept of Fa™-closed sets and study their basic properties in fts. Furthermore, the
investigation will include some of the properties of the fuzzy separation axioms such fuzzy a™-R;-space and fuzzy a™-
T;-space (here the indexes i and j are natural numbers of the spaces R and T are from 0 to 3 and from 0 to 4 respectively).

2. PRELIMINARIES

Throughout this paper, (X, 7) or simply X always mean a fts. A fuzzy point [4] with support x € X and value 2 (0 < 4 <
1) at x € X will be denoted by x;,, and for fuzzy set A, x; € A iff 1 < A(x). Two fuzzy points x; and y, are said to be
distinct iff their supports are distinct. That is, by 05 and 1, we mean the constant fuzzy sets taking the values 0 and 1 on
X, respectively [2]. For a fuzzy set A ina fts (X, 1), cl(A), int(A) and A = 15 — A represents the fuzzy closure of A,
the fuzzy interior of A and the fuzzy complement of A respectively.

Definition 2.1:[12] A fuzzy point in a set X with support x and membership value 1 is called crisp point, denoted by x;.
For any fuzzy set A in X, we have x; € A iff A(x) = 1.

Definition 2.2:[8] A fuzzy point x; € A is called quasi-coincident (briefly g-coincident) with the fuzzy set A is denoted
by x,qA iff 2+ A(x) > 1. A fuzzy set A in a fts (X, 1) is called g-coincident with a fuzzy set B which is denoted by
AqB iff there exists x € X such that A(x) + B(x) > 1. If the fuzzy sets A and B in a fts (X, T) are not g-coincident then
we write AgB. Note that A < B & Aq(1x — B).

Definition 2.3:[8] A fuzzy set A ina fts (X, 7) is called g-neighbourhood (briefly g-nhd) of a fuzzy point x; (resp. fuzzy
set B) if there is a F-0S M in a fts (X, 7) such that x;qM < A (resp. BqM < A).
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Definition 2.4:[1] A fuzzy set A of a fts (X, 7) is called a fuzzy a-open set (briefly Fa-0S) if A < int(cl(int(A))) and
a fuzzy a-closed set (briefly Fa-CS) if cl(int(cl(A))) < A. The fuzzy a-closure of a fuzzy set A of fts (X, 1) is the
intersection of all Fa-CS that contain A and is denoted by acl(A).

Definition 2.5:[5] A fuzzy set A of a fts (X, 1) is called a fuzzy g-closed set (briefly Fg-CS) if cl(A) < U whenever
A<UandUisaF-0SinX.

Definition 2.6:[10] A fuzzy set A of a fts (X,7)is called a fuzzy ag-closed set (briefly Fag-CS) if acl(A) <U
whenever A < U and U isa Fa-0S in X.

Definition 2.7:[9] A fuzzy set A of a fts (X, t) is called a fuzzy ga-closed set (briefly Fga-CS) if acl(A) < U whenever
A <UandUisaF-0SinX.

Remark 2.8:[5,11] In a fts (X, 7), then the following statements are true:
(i) Every F-CS is a Fg-CS.
(ii) Every F-CS is a Fa-CS.

Remark 2.9:[9,10] In a fts (X, 1), then the following statements are true:
(i) Every Fg-CS is a Fga-CS.

(ii) Every Fa-CS is a Fag-CS.

(iii) Every Fag-CS is a Fga-CS.

3. FUZZY a™-CLOSED SETS

Definition 3.1: A fuzzy set A of a fts (X,7)is called a fuzzy a™-closed set (briefly Fa™-CS) if int(cl(A)) <U
whenever A < U and U is a Fa-0S. The complement of a fuzzy a™-closed set in X is fuzzy a™-open set (briefly Fa™-
0S) in X, the family of all Fa™-0S (resp. Fa™-CS) of a fts (X, 7) is denoted by Fa™-0(X) (resp. Fa™-C (X)).

Example 3.2: Let X = {x, y} and the fuzzy set A in X defined as follows: A(x) = 0.5, A(y) = 0.5.
Let T = {0y, A, 15} be a fts. Then the fuzzy sets Oy, A and 1y are Fa™-0S and Fa™-CS at the same time in X.

Remark 3.3: In a fts (X, t), then the following statements are true:
(i) Every F-CS is a Fa™-CS.

(i) Every Fa™-CS is a Fa-CS.

(iii) Every Fa™-CS is a Fag-CS.

(iv) Every Fa™-CS is a Fga-CS.

Proof: (i) This follows directly from the definition (3.1).

(ii) Let A be a Fa™-CS in X and let U be a F-OS such that A4 < U. Since every F-OS is a Fa-0S and A is a Fa™-CS,
int(cl(A)) < (int(cl(A))) Vv (cl(int(A))) < U. Therefore, A isa Fa-CSin X.

(iii) From the part (ii) and remark (2.9) (ii).

(iv) From the part (iii) and remark (2.9) (iii).

Theorem 3.4: A fuzzy set A is Fa™-CS iff int(cl(A)) — A contains no non-empty Fa™-CS.

Proof: Necessity. Suppose that F is a non-empty Fa™-closed subset of int(cl(A)) such that F < int(cl(A)) — A.
Then F < int(cl(A)) — A. Then F < int(cl(A)) A A€. Therefore F < int(cl(A)) and F < AC€. Since F° is a Fa™-
0S and A is a Fa™-CS, int(cl(A)) < F€. Thus F < (int(cl(A)))¢. Therefore F < (int(cl(A))) A (int(cl(A)))¢ =
Oy. Therefore F = 05 = int(cl(A)) — A contains no non-empty Fa™-CS.
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Sufficiency. Let A < U be a Fa™-0S. Suppose that int(cl(A)) is not contained in U. Then (int(cl(A)))€ is a non-
empty Fa™-CS and contained in int(cl(A)) — A which is a contradiction. Therefore, int(cl(A)) < U and hence A is a
Fa™-CS.

Theorem 3.5: Let B <Y < X, if Bisa Fa™-CS relative to Y and Y is a F-OS then B is a Fa™-CS in a fts (X, 7).

Proof: Let U be a Fa-0S in a fts (X,t) such that B < U. Given that B <Y < X. Therefore B <Y and B < U. This
implies B <Y AU. Since B is a Fa™-CS relative to Y, then int(cl(B)) < U.Y Aint(cl(B)) <Y AU implies that
Y A (int(cl(B))) <U. Thus [Y Aint(cl(B))]V [int(cl(B))]¢ < UV [int(cl(B))]. This implies that (YV
(int(cl(B)))) A (int(cl(B))) Vv (int(cl(B))) < UV (int(cl(B)))". Therefore (Y < (int(cl(B))) <UV
(int(cl(B)))¢. Since Y is a F-0S in X. int(cl(Y)) < UV (int(cl(B)))¢. Also B <Y implies that int(cl(B)) <
int(cl(Y)). Thus nt(cl(B)) < int(cl(Y)) < UV (int(cl(B)))¢. Therefore int(cl(B)) < U. Since int(cl(B)) is not
contained in (int(cl(B)))¢, B is a Fa™-CS relative to X.

Theorem 3.6: If A isa Fa™-CS and A < B < int(cl(A)), then B is a Fa™-CS.

Proof: Let A be a Fa™-CS such that A < B < int(cl(A)). Let U be a Fa-0S in a fts (X, 7) such that B < U. Since A is
a Fa™-CS, we have int(cl(A)) < U whenever A <U. Since A <B and B < int(cl(A)), then int(cl(B)) <
int(cl(int(cl(A)))) < int(cl(A)) < U. Therefore, nt(cl(B)) < U. Thus, B isa Fa™-CSin X.

Theorem 3.7: The intersection of a Fa™-CS and a F-CS is a Fa™-CS.

Proof: Let A be a Fa™-CS and F be a F-CS. Since A is a Fa™-CS, int(cl(A)) < U whenever A < U where U is a Fa-
0S. To show that A A F is a Fa™-CS. It is enough to show that int(cl(A A F)) < U whenever A AF < U, where U is a
Fa-0S. Let M = 1, — F then A < UV M. Since M is a F-0S, U VM is a Fa-0S and A is a Fa™-CS, int(cl(A)) <
UVM. Now, int(cl(A AF)) < int(cl(A) Aint(cl(F)) < int(cl(A))AF < (UVMIANF < (UAF)V
(M AF) < (UAF)V 0y <U. This implies that A A F is a Fa™-CS.

Theorem 3.8: If A and B are two Fa™-CS in a fts (X, t), then A A B isa Fa™-CS in X.

Proof: Let A and B be two Fa™-CS in a fts (X, 7). Let U be a Fa-0S in X such that A AB < U.
Now, int(cl(A A B)) < int(cl(A)) A int(cl(B)) < U. Hence A A B is a Fa™-CS.

Remark 3.9: The union of two Fa™-CS need not be a Fa™-CS.

Definition 3.10: The intersection of all Fa™-CS in a fts (X, t) containing A is called fuzzy a™-closure of A and is
denoted by a™-cl(A), a™-cl(A) =A{B:A < B,BisaFa™-CS}.

Definition 3.11: The union of all Fa™-0S in a fts (X, ) contained in A is called fuzzy a™-interior of <A and is denoted
by a™-int(A), a™-int(A) =V {B: A = B,Bisa Fa™-0S}.

Proposition 3.12: Let A be any fuzzy set in a fts (X, 7). Then the following properties hold:
(i) a™-int(A) = A iff A isa Fa™-0S.

(il a™-cl(A) = A iff A isa Fa™-CS.

(iii) a™-int(A) is the largest Fa™-0S contained in A.

(iv) a™-cl(A) is the smallest Fa™-CS containing A.

Proof: (i), (ii), (iii) and (iv) are obvious.
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Proposition 3.13: Let A be any fuzzy set in a fts (X, t). Then the following properties hold:
() a™-int(1y — A) = 1, — (a™-cl(A)),
(i) a™-cl(1y — A) = 1x — (a™-int(A)).

Proof: (i) By definition, a™-cl(A) = A{B:A < B, B is a Fa™-CS}

1y — (@™-cl(A)) = 1y — A{B: A < B, B is a Fa™-CS}
=V {ly — B: A < B,BisaFa™-CS}
=V{H:1y — A = H,H isaFa™-0S}
=a™-int(1ly — A)

(ii) The proof is similar to (i).

Definition 3.14: A fuzzy set A in a fts (X, 1) is said to be a fuzzy a™-neighbourhood (briefly Fa™-nhd) of a fuzzy
point x;, if there exists a Fa™-0S B such that x; € B < A. A Fa™-nhd A is said to be a Fa™-open-nhd (resp. Fa™-
closed-nhd) iff A is a Fa™-0S (resp. Fa™-CS). A fuzzy set A in a fts (X, 7) is said to be a fuzzy a™-g-neighbourhood
(briefly Fa™-g-nhd) of a fuzzy point x; (resp. fuzzy set B) if there exists a Fa™-0S M in a fts (X, t) such that x;qM <
A (resp. BgM < A).

Theorem 3.15: A fuzzy set A of a fts (X, 7) is Fa™-CS iff AGK = int(cl(A))gX, for every Fa-CS K of X.

Proof: Necessity. Let X be a Fa-CS and AG¥K. Then A < 1y —K and 1y — X is a Fa-0S in X which implies that
int(cl(A)) <1y — K as A isa Fa™-CS. Hence, int(cl(A))gXK.

Sufficiency. Let U be a Fa-0S of a fts (X, 7) such that A < U. Then Ag(1y —U) and 1y —U is a Fa-CS in X. By
hypothesis, int(cl(A))g(1xy —U) implies int(cl(A)) < U. Hence, A isa Fa™-CS in X.

Theorem 3.16: Let x; and A be a fuzzy point and a fuzzy set respectively in a fts (X, 7). Then x; € a™-cl(A) iff every
Fa™-g-nhd of x;, is g-coincident with A.

Proof: Let x; € a™-cl(A). Suppose there exists a Fa™-g-nhd M of x; such that M'gA. Since M is a Fa™-g-nhd of x;,
there exists a Fa™-0S IV in X such that x;qV < M whish gives that N'gA and hence A < 1y — N. Then a™-cl(A) <
1y — NV, as 1y — IV isa Fa™-CS. Since x; € 1y — V', we have x; & a™-cl(A), a contradiction. Thus every Fa™-g-nhd
of x, is g-coincident with A.

Conversely, suppose x; € a™-cl(A). Then there exists a Fa™-CS B such that A <B and x; € B. Then we have
x,q(1x —B) and Ag(1x — B), a contradiction. Hence x; € gag-cl(A).

Theorem 3.17: Let A and B be two fuzzy sets in a fts (X, ). Then the following are true:
(i) a™-cl(0x) = Oy, a™-cl(1y) = 14.

(ii) a™-cl(A) isa Fa™-CS in X.

(i) a™-cl(A) < a™-cl(B) when A < B.

(iv) MqA iff Mqa™-cl(A), when M is a Fa™-0S in X.

(v) a™-cl(A) = a™-cl(a™-cl(A)).

Proof: (i) and (ii) are obvious.

(iii) Let x; ¢ a™-cl(B). By theorem (3.16), there is a Fa™-g-nhd IV of a fuzzy point x; such that &gB, so there is a
Fa™-0S M such that x,;qgM < N and M'gB. Since A < B, then M'gA. Hence x; & a™-cl(A) by theorem (3.16). Thus
a™-cl(A) < a™-cl(B).

(iv) Let M be a Fa™-0S in X. Suppose that M'gA, then A < 1y — M. Since 1y — M is a Fa™-CS and by a part (iii),
a™cl(A) < a™-cl(1y — M) = 1y, — M. Hence, M ga™-cl(A).

Conversely, suppose that M ga™-cl(A). Then a™-cl(A) < 1x — M. Since A < a™-cl(A), we have A < 1y — M.
Hence M gA.
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(v) Since a™-cl(A) < a™-cl(a™-cl(A)). We prove that a™-cl(a™-cl(A)) < a™-cl(A). Suppose that x; & a™-cl(A).
Then by theorem (3.16), there exists a Fa™-q-nhd V" of a fuzzy point x; such that Vg4 and so there is a Fa™-0S M in
X such that x;qM < N and MgA. By a part (iv), Mga™-cl(A). Then by theorem (3.16), x; & a™-cl(a™-cl(A)).
Thus a™-cl(a™-cl(A)) < a™-cl(A). Hence a™-cl(A) = a™-cl(a™-cl(A)).

Theorem 3.18: Let A and B be two fuzzy sets in a fts (X, 7). Then the following are true:
(i) a™-int(0y) = 0y, a™-int(1y) = 1.

(ii) a™-int(A) isa Fa™-0S in X.

(iii) a™-int(A) < a™-int(A) when A < B.

(iv) a™-int(A) = a™-int(a™-int(A)).

Proof: Obvious.

Remark 3.19: The following are the implications of a Fa™-CS and the reverse is not true.

Fg-CS > Fga-CS < Fag-CS
y y K
F-CS Fa™-CS > Fa-CS

4. FUZZY a™-KERNEL AND FUZZY a™-R;-SPACES, i =0,1,2,3
Definition 4.1: The intersection of all Fa™-open subset of X containing M is called the fuzzy a™-kernel of M (briefly

a™-ker(M)), this means a™-ker(M) = A{U € Fa™-0(X): M < U}.

Definition 4.2: In a fts (X, 1), a fuzzy set M is said to be weakly ultra fuzzy a™-separated from 2V if there exists a Fa™-
0S U suchthat U AN = 0y or M A a™-cl(IV) = 0y.

By definition (4.2), we have the following: For every two distinct fuzzy points x, and y, of X,
(i) a™-cl({x;}) = {y5 : {¥5} is not weakly ultra fuzzy a™-separated from {x;}}.
(i) a™-ker({x,}) = {ys : {x;} is not weakly ultra fuzzy a™-separated from {y,}}.

Corollary 4.3: Let (X, 1) be a fts, then y, € a™-ker({x;}) iff x; € a™-cl({y,}) foreachx # y € X.

Proof: Suppose that y, & a™-ker({x;}). Then there exists a Fa™-0S U containing x; such that y, € U. Therefore, we
have x; € a™-cl({y,}). The converse part can be proved in a similar way.

Definition 4.4: A fts (X, 1) is called fuzzy a™-R,-space (Fa™-R,-space, for short) if for each Fa™-0S U and x; € U,
then a™-cl({x;}) < U.

Definition 4.5: A fts (X, 1) is called fuzzy a™-R,-space (Fa™-R,-space, for short) if for each two distinct fuzzy points
x; and y, of X with a™-cl({x;}) # a™-cl({y,}), there exist disjoint Fa™-0S U,V such that a™-cl({x;}) < U and a™-

cl(fys}) = V.

Theorem 4.6: Let (X, 7) be a fts. Then (X, t) is Fa™-R,-space iff a™-cl({x;}) = a™-ker({x;}), for each x € X.
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Proof: Let (X,7) be a Fa™-Ry-space. If a™-cl({x,}) # a™-ker({x;}), for each x € X, then there exist another fuzzy
point y # x such that y, € a™-cl({x,}) and y, ¢ a™-ker({x;}) this means there exist an U,, Fa™-0S, y, & U,, implies
a™-cl({x;}) ¥ U, this contradiction. Thus a™-cl({x;}) = a™-ker ({x;}).

Conversely, let a™-cl({x;}) = a™-ker({x;}), for each Fa™-0S U, x; € U, then a™-ker({x;}) = a™-cl({x3}) < U [by
definition (4.1)]. Hence by definition (4.4), (X, t) is a Fa™-R,-space.

Theorem 4.7: A fts (X, t) is an Fa™-R,-space iff for each A Fa™-CS and x; € A, then a™-ker({x;}) < A.

Proof: Let for each A Fa™-CS and x; € A, then a™-ker({x;}) < A and let U be a Fa™-0S, x; € U then for each
v, € U implies y, € U° is a Fa™-CS implies a™-ker({y,}) < U° [by assumption]. Therefore x; & a™-ker({y,})
implies y, ¢ a™-cl({x;}) [by corollary (4.3)]. So a™-cl({x;}) < U.Thus (X, ) is an Fa™-R,-space.

Conversely, let (X,7) be a Fa™-R,-space and A be a Fa™-CS and x, € A. Then for each y, & A implies y, € A€ is a
Fa™-0S, then a™-cl({y,}) < A€[since (X,7) is a Fa™-R,-space], so a™-ker({x;}) = a™-cl({x;}). Thus a™-
ker({x;}) < A.

Corollary 4.8: A fts (X, 7) is Fa™-R,-space iff for each U Fa™-0S and x; € U, then a™-cl(a™-ker({x;})) < U.
Proof: Clearly.
Theorem 4.9: Every Fa™-R,-space is a Fa™-R,-space.

Proof: Let (X, t) be a Fa™-R,-space and let U be a Fa™-0S, x; € U, then for each y, € U implies y, € U is a Fa™-CS
and a™-cl({y,}) < U€implies a™-cl({x;}) # a™-cl({y,}). Hence by definition (4.5), a™-cl({x;}) < U. Thus (X,7) isa
Fa™-R,-space.

Theorem 4.10: A fts (X, 7) is Fa™-R,-space iff for each x # y € X with a™-ker({x;}) # a™-ker({y,}), then there exist
Fa™-CS A,, A, such that a™-ker({x;}) < A,, a™ker({x;}) A A, = 0x and a™-ker({y,}) < A,, a™ker({y,}) A
c/q,l = OX and c/q,l Vc/q,z = 1x.

Proof: Let (X, 1) be a Fa™-R,-space. Then for each x # y € X with a™-ker({x;}) # a™-ker({y,}). Since every Fa™-
R;-space is a Fa™-R,-space [by theorem (4.9)], and by theorem (4.6), a™-cl({x;}) # a™-cl({y,}), then there exist Fa™-
0S U4, U, such that a™-cl({x;}) < U, and a™-cl({y,}) < U, and U, A U, = Oy [since (X, ) is a Fa™-R,-space], then
US and U are Fa™-CS such that US v US = 14. Put A, = U and A, = US. Thus x; € U; < A, and y, € U, < A4 SO
that a™-ker({x;}) < U; < A, and a™-ker({y,}) < U, < A,.

Conversely, let for each x # y € X with a™-ker({x;}) # a™-ker({y,}), there exist Fa™-CS A;, A, such that a™-
ker({x;}) < Ay, a™ker({x;}) AA, =0y and a™-ker({y,}) < A,, a™ker({y;})) AA; =0y and A, VA, = 1y,
then AS and AS are Fa™-0S such that AS A AS = 0. Put AS = U, and A5 = U,. Thus, a™-ker ({x;}) < U, and a™-
ker({y,}) < U, and U; AU, = Oy, so that x; € U, and y, € U, implies x; & a™-cl({y,}) and y, &€ a™-cl({x;}), then
a™-cl({x;}) < U, and a™-cl({y,}) < U,. Thus, (X, 1) is a Fa™-R,-space.

Corollary 4.11: A fts (X, 7) is Fa™-R,-space iff for each x # y € X with a™-cl({x;}) # a™-cl({y,}) there exist disjoint
Fa™-0S U,V such that a™-cl(a™-ker({x;})) < Uand a™-cl(a™-ker ({y,})) < V.

Proof: Let (X,7) be a Fa™-R;-space and let x # y € X with a™-cl({x;}) # a™-cl({y,}), then there exist disjoint Fa™-
0S U,V such that a™-cl({x;}) < U and a™-cl({y,}) < V. Also (X, 1) is Fa™-R,-space [by theorem (4.9)] implies for
each x € X, then a™-cl({x3}) = a™-ker({x;}) [by theorem (4.6)], but a™-cl({x;}) = a™-cl(a™-cl({x;})) = a™-
cl(a™-ker({x;})). Thus a™-cl(a™-ker({x;})) < U and a™-cl(a™-ker({y,})) < V.
Conversely, let for each x # y € X with a™-cl({x;}) # a™-cl({y,}) there exist disjoint Fa™-0S U,V such that a™-
cl(a™-ker({x;})) <U and a™-cl(a™-ker({y,})) < V. Since {x;} < a™-ker({x;}), then a™-cl({x;}) < a™-cl(a™-
ker({x;})) for each x € X. So we get a™-cl({x;}) < U and a™-cl({y,}) < V. Thus, (X, ) is a Fa™-R,-space.
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Definition 4.12: Let (X, 7) be a fts. Then X is called:

(i) fuzzy a™-regular space (Fa™r-space, for short), if for each fuzzy point x; and each Fa™-CS F such that x; € 1x- F,
there exist disjoint Fa™-0S U and V such that x; € Wand F < V.

(ii) fuzzy a™-normal space (Fa™n-space, for short) iff for each pair of disjoint Fa™-CS A and B, there exist disjoint
Fa™-0S U andV suchthat A < U and B < V.

(iii) fuzzy a™-R,-space (Fa™-R,-space, for short) if it is property Fa™r-space.

(iv) fuzzy a™-R5-space (Fa™-R5-space, for short) iff it is Fa™-R,-space and Fa™n-space.

Example 4.13: Consider the fts (X, 7) of example (3.2). Then (X, 7) is a Fa™r-space and Fa™n-space.
Remark 4.14: Every Fa™-R;-space is a Fa™-R;_,-space, k = 2,3.
Proof: Clearly.

Theorem 4.15: A fts (X, 7) is Fa™r-space (Fa™-R,-space) iff for each Fa™-closed subset A of X and x; & A with a™-
ker(A) # a™-ker({x,}) then there exist Fa™-CS F,,F, such that a™-ker(A) < F,, a™-ker(A) AF, = 04 and a™-
ker({x;}) < Fy, a™-ker({x;}) NF, =0y and F, VF, = 1.

Proof: Let (X,7) be a Fa™r-space (Fa™-R,-space) and let A be a Fa™-CS, x; & A, then there exist disjoint Fa™-0S
U, Vsuchthat A <U, x; € Vand U AV = Oy, then U and V¢ are Fa™-CS such that U° v V¢ = 1;.

Put F, =U°and F; = V¢, so we get a™-ker(A) < U< F;, a™ker(A)AF, =0xand a™-ker({x;}) <V <F,,
am™-ker({x;) ANF; =0y and F; VF, = 1.

Conversely, let for each Fa™-closed subset A of X and x; & A with a™-ker(A) # a™-ker({x;}), then there exist Fa™-
CS F,,F, such that a™-ker(A) <F,, a™ker(A)AF, =0y and a™-ker({x;}) <F,, a™ker({(GHAF, =
Oxand Fy VF, =1x. Then F{andFs are Fa™-0S such that Ff AFs =0y and a™-ker(A) AFf{ =0y, a™-
ker({x;}) ANF5 = 0x. So that A < F5 and x; € F{. Thus, (X, 1) is a Fa™r-space (Fa™-R,-space).

Lemma 4.16: Let (X, ) be a Fa™r-space and F be a Fa™-CS. Then a™-ker(F) = F = a™-cl(F).

Proof: Let (X, t) be a Fa™r-space and F be a Fa™-CS. Then for each x, & F, there exist disjoint Fa™-0S ‘U, V such that
F < U and x; € V. Since a™-ker(F) < U, implies a™-ker(F) AV = 0y, thusx; & a™-cl(a™-ker(F)). We showing
that if x; & F implies x; & a™-cl(a™-ker(F)), therefore a™-cl(a™-ker(F)) < F = a™-cl(F). As a™-cl(F) =F <
a™-ker(F) [by definition (4.1)]. Thus, a™-ker(F) = F = a™-cl(F).

Theorem 4.17: A fts (X, t) is Fa™r-space (Fa™-R,-space) iff for each Fa™-closed subset F of X and x; € F with a™-
cl(a™-ker(F)) # a™-cl(a™-ker({x,;})), then there exist disjoint Fa™-0S U, V such that a™-cl(a™-ker(F)) <U and
a™-cl(a™-ker({x;})) < V.

Proof: Let (X,7) be a Fa™r-space (Fa™-R,-space) and let F be a Fa™-CS, x; € F. Then there exist disjoint Fa™-0S
U,V such that F < U and x; € V. By lemma (4.16), a™-cl(a™-ker(F)) = a™-cl(F) = F, in the other hand (X, 7) is a
Fa™-R,-space [by theorem (4.9) and remark (4.14)]. Hence, by theorem (4.6), a™-cl({x;}) = a™-ker({x;}), for
each x € X. Thus, a™-cl(a™-ker(F)) < U and a™-cl(a™-ker({x;})) < V.

Conversely, let for each Fa™-CS F and x; € F with a™-cl(a™-ker(F)) # a™-cl(a™-ker({x;})), then there exist
disjoint Fa™-0S U,V such that a™-cl(a™-ker(F)) <U and a™-cl(a™-ker({x;})) <V. Then F <Uand x, € V.
Thus, (X, 1) is a Fa™r-space (Fa™-R,-space).

Theorem 4.18: A fts (X, t) is Fa™n-space iff for each disjoint Fa™-CS A,B with a™-ker(A) # a™-ker(B) then there
exist Fa™-CS F,,F, such that a™-ker(A) < F;, a™-ker(A) AF, = 0x and a™-ker(B) < F,, a™-ker(B) AF; = 0y
andT1VT2 zlx.
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Proof: Let (X,7) be a Fa™n-space and let for each disjoint Fa™-CS A,B with a™-ker(A) # a™-ker(B) then there
exist disjoint Fa™-0S U,V such that A < U andB <V and U AV = Oy, then U° and V¢ are Fa™-CS such that U° v
V¢ =14 and a™-ker(A) AU = 0y, a™-ker(B) AV = 0x Put U¢ = F, and V¢ = F,. Thus, a™-ker(A) < F,, a™-
ker(A) AF, = 0y and a™-ker(B) < F,, a™-ker(B) AF; = 0.

Conversely, let for each disjoint Fa™-CS A,B with a™-ker(A) # a™-ker(B), there exist Fa™-CS F,,F, such that a™-
ker(A) <F,, a™ker(A)AF, =0y and a™-ker(B)<F, a™ker(B)AF, =0y and F,VF,=14
implies F{ and F5 are Fa™-0S such that Ff AF5 = 0x. Put F{ =7V and F5 = U, thus a™-ker(A) <U and a™-
ker(B) <V,sothat A < Uand B < V. Thus (X, 1) is a Fa™n-space.

Theorem 4.19: Every Fa™-R;-space is a Fa™r-space.

Proof: Let F be a Fa™-CS and x; € F. Then a™-ker({x;}) = a™-ker(F), then for each y, € F there exist Fa™-CS
Ay, , By, such that a™-ker({y,}) <A, , a™ker({y;}) A B, =0y and a™-ker({x;}) <B,_ , a™-ker({x;}) A
Ay, = 0y [since (X,7) is a Fa™-R;-space and by theorem (4.10)], let § =A{B,_:x, € B, }, so we have § A F = Ox.
Hence (X, 1) is a Fa™n-space, then there exist disjoint Fa™-0S U,V such that F < U and x; € § < V. Thus, (X,7) isa
Fa™r-space.

5. FUZZY a™-T;-SPACES, j = 0,1,2,3,4

Definition 5.1: Let (X, 7) be a fts. Then X is called:

(i) fuzzy a™-T,-space (Fa™-T,-space, for short) iff for each pair of distinct fuzzy points in X, there exists a Fa™-0S in X
containing one and not the other.

(ii) fuzzy a™-T;-space (Fa™-T,-space, for short) iff for each pair of distinct fuzzy points x; and y, of X, there exists
Fa™-0S U,V containing x; and y, respectively such that y, ¢ U and x; ¢ V.

(iii) fuzzy a™-T,-space (Fa™-T,-space, for short) iff for each pair of distinct fuzzy points x, and y, of X, there exist
disjoint Fa™-0S U,V in X such that x;, e U and y, € V.

(iv) fuzzy a™-T;-space (Fa™-T;-space, for short) iff it is Fa™-T;-space and Fa™r-space.

(v) fuzzy a™-T,-space (Fa™-T,-space, for short) iff it is Fa™-T;-space and Fa™n-space.

Example 5.2: Let X = {a,b} and 7 = {0y, a,, 15} be a fts on X. Then a, is a crisp point in X and (X, 7) is a Fa™-T,-
space.

Example 5.3: Let X = {u, v} and © = {0y, uy, v;, 15} be a fts on X. Then u,, v, are crisp points in X and (X, t) is a Fa™-
T,-space and Fa™-T,-space.

Example 5.4: The discrete fuzzy topology in X = [—2,2] is a Fa™-T;-space and Fa™-T,-space.

Remark 5.5: Every Fa™-T,-space is a Fa™-T,_;-space, k = 1,2,3,4.

Proof: Clearly.

Theorem 5.6: A fts (X, t) is Fa™-T,-space iff either y, & a™-ker({x;}) or x; & a™-ker({y,}), foreachx # y € X.
Proof: Let (X,7) be a Fa™-T,-space then for each x # y € X, there exists a Fa™-0S U such that x; € U, y, € U or
x; € U, y, € U.Thus either x; € U, y, & Uimplies y, & a™-ker({x;}) orx; & U, y, € Uimplies x; & a™-ker({y,}).

Conversely, let either y, & a™-ker({x;}) or x;, & a™-ker({y,}), for each x # y € X. Then there exists a Fa™-0S U such
thatx, € U,y, € Uorx; & U, y, €U Thus (X,7) is a Fa™-T,-space.
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Theorem 5.7: A fts (X, t) is Fa™-T,-space iff either a™-ker ({x,}) is weakly ultra fuzzy a™-separated from {y,} or a™-
ker({y,}) is weakly ultra fuzzy a™-separated from {x;} foreachx # y € X.

Proof: Let (X,7) be a Fa™-T,-space then for each x # y € X, there exists a Fa™-0S U such thatx, € U, y, ¢ U or
%, € U, vy, €U. Now if x; € U, y, & U implies a™-ker({x;}) is weakly ultra fuzzy a™-separated from {y,}. Or if
x; € U, y, € U implies a™-ker({y,}) is weakly ultra fuzzy a™-separated from {x; }.

Conversely, let either a™-ker({x;}) be weakly ultra fuzzy a™-separated from {y,} or a™-ker({y,}) be weakly ultra
fuzzy a™-separated from {x;}. Then there exists a Fa™-0S U such that a™-ker({x;}) <U andy, ¢ U or a™-
ker({y;}) < U, x; € Uimpliesx; €U, y, € Uorx, & U, y, € U. Thus, (X, ) isa Fa™-T,-space.

Theorem 5.8: A fts (X, ) is Fa™-T,-space iff for each x = y € X, a™-ker({x;}) is weakly ultra fuzzy a™-separated
from {y,} and a™-ker({y,}) is weakly ultra fuzzy a™-separated from {x;}.

Proof: Let (X, ) be a Fa™-T;-space then for each x # y € X, there exist Fa™-0S U,V such that x; € U, y, € U and
X, € V,y, €V. Implies a™-ker({x,}) is weakly ultra fuzzy a™-separated from {y,} and a™-ker({y,}) is weakly ultra
fuzzy a™-separated from {x;}.

Conversely, let a™-ker({x;}) be weakly ultra fuzzy a™-separated from {y,} and a™-ker({y,}) be weakly ultra fuzzy
a™-separated from {x;}. Then there exist Fa™-0S U,V such that a™-ker({x;}) < U,y, € U and a™-ker({y,}) <
V,x, € Vimpliesx, eU,y, € Uand x; € V, y, € V. Thus, (X, ) isa Fa™-T;-space.

Theorem 5.9: A fts (X, 7) is Fa™-T;-space iff for each x € X, a™-ker ({x;}) = {x3}.

Proof: Let (X,7) be a Fa™-T,-space and let a™-ker({x;}) # {x;}. Then a™-ker({x;}) contains another fuzzy point
distinct from x, say y,. So v, € a™-ker({x;}) implies a™-ker({x,}) is not weakly ultra fuzzy a™-separated from {y,}.
Hence by theorem (5.8), (X, t) is not a Fa™-T, -space this is contradiction. Thus a™-ker({x;}) = {x;}.

Conversely, let a™-ker({x;}) = {x;}, for each x € X and let (X, t) be not a Fa™-T,-space. Then by theorem (5.8), a™-
ker({x;}) is not weakly ultra fuzzy a™-separated from {y,}, this means that for every Fa™-0S U contains a™-ker ({x;})
then y, € U implies y, € A {U € Fa™-0(X): x; € U} implies y, € a™-ker({x,}), this is contradiction. Thus, (X,7) is a
Fa™-T, -space.

Theorem 5.10: A fts (X, t) is Fa™-T;-space iff foreachx =y € X, y, & a™-ker({x;}) and x; & a™-ker ({y,}).

Proof: Let (X,7) be a Fa™-T,-space then for each x # y € X, there exists Fa™-0S U,V such that x; € U, y, € U and
Vs €V, x3 & U. Implies y, & a™-ker({x;}) and x; & a™-ker ({y,}).

Conversely, let y, & a™-ker({x;}) and x; € a™-ker({y,}), for each x # y € X. Then there exists Fa™-0S U,V such
thatx, € U, y, € Uand y, € V, x; € V. Thus, (X, 7) isa Fa™-T;-space.

Theorem 5.11: A fts (X, 7) is Fa™-T; -space iff for each x # y € X implies a™-ker({x;}) A a™-ker({y,}) = 0y.

Proof: Let (X,t) be a Fa™-T,-space. Then a™-ker({x;}) = {x;} and a™-ker({y,}) = {v,} [by theorem (5.9)]. Thus,
a™-ker({x}) A a™-ker ({y,}) = O.

Conversely, let for each x # y € X implies a™-ker ({x;}) A a™-ker({y,}) = 0y and let (X, 7) be not Fa™-T,-space then
for each x += y € X implies y, € a™-ker({x;}) or x; € a™-ker({y,}) [by theorem (5.10)], then a™-ker({x;}) A a™-
ker({y,}) # Oy this is contradiction. Thus, (X, 7) is a Fa™-T;-space.

Theorem 5.12: A fts (X, 7) is Fa™-T, -space iff (X, 1) is Fa™-T,-space and Fa™-R,-space.

Proof: Let (X,7) be a Fa™-T,-space and let x; € U be a Fa™-0S, then for each x #y € X, a™-ker({x;}) Aa™-
ker({y;}) = 0y [by theorem (5.11)] implies x; & a™-ker({y,}) and y, & a™-ker({x,}) this means a™-cl({x;}) = {x;},
hence a™-cl({x;}) < U. Thus, (X, 1) is a Fa™-R,-space.
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Conversely, let (X, t) be a Fa™-T,-space and Fa™-R-space, then for each x # y € X there exists a Fa™-0S U such that
€U v, €U or x; € U,y, €U. Say x; € U,y, € U since (X, t) is a Fa™-R,-space, then a™-cl({x;}) < U, this
means there exists a Fa™-0S V such that y, € V,x; € V. Thus, (X, t) is a Fa™-T; -space.

Theorem 5.13: A fts (X, 1) is Fa™-T,-space iff
(i) (X, 1) is Fa™-T,-space and Fa™-R,-space.
(if) (X, t) is Fa™-T;-space and Fa™-R,-space.

Proof: (i) Let (X,7) be a Fa™-T,-space then it is a Fa™-T,-space. Now since (X, t) is a Fa™-T,-space then for each
x #y € X, there exist disjoint Fa™-0S U,V such that x; € U and y, € V implies x; ¢ a™-cl({y,}) and y, & a™-
cl({x;}), therefore a™-cl({x;}) = {x;} < U and a™-cl({y,}) = {ys} < V. Thus, (X, t) is a Fa™-R,-space.

Conversely, let (X, t) be a Fa™-T,-space and Fa™-R,-space, then for each x # y € X, there exists a Fa™-0S U such that
% €Uy, € UOry, €U x; & U, implies a™-cl({x;}) # a™-cl({y,}), since (X, 1) is a Fa™-R,-space [by assumption],
then there exist disjoint Fa™-0S M, V" such that x; € M and y, € NV. Thus, (X, 7) is a Fa™-T,-space.

(ii) By the same way of part (i) a Fa™-T,-space is Fa™-T; -space and Fa™-R,-space.

Conversely, let (X, t) be a Fa™-T;-space and Fa™-R,-space, then for each x # y € X, there exist Fa™-0S U,V such that
% €Uy, ¢ Uandy, €V, x; & V implies a™-cl({x;}) # a™-cl({y,}), since (X, t) is a Fa™-R,-space, then there exist
disjoint Fa™-0S M, V" such that x; € M and y, € V. Thus, (X, t) is a Fa™-T,-space.

Corollary 5.14: A Fa™-T,-space is Fa™-T,-space iff for each x # y € X with a™-ker({x;}) # a™-ker ({y,}) then there
exist Fa™-CS Aq,A, such that a™-ker({x;}) < A,, a™-ker({x;}) AA, =05y and a™-ker({y,}) < A,, a™-
keT({yo-}) ACHI = OX and cﬂl Vcﬂz = 1x.

Proof: By theorem (4.10) and theorem (5.13).

Corollary 5.15: A Fa™-T; -space is Fa™-T,-space iff one of the following conditions holds:

(i) for each x #y € X with a™-cl({x;}) # a™-cl({y,}), then there exist Fa™-0S U,V such that a™-cl(a™-
ker({x;})) < Uand a™-cl(a™-ker({y,})) < V.

(ii) for each x # y € X with a™-ker({x;}) # a™-ker({y,}), then there exist Fa™-CS A,,A, such that a™-ker({x;}) <
Ay, a™ker({x;}) N A, = 0y and a™-ker ({y,}) < A,, a™-ker({y,}) NA;, =0y and A, VA, = 1y.

Proof: (i) By corollary (4.11) and theorem (5.13).
(ii) By theorem (4.10) and theorem (5.13).

Theorem 5.16: A Fa™-R,-space is Fa™-T,-space iff one of the following conditions holds:

(i) foreach x € X, a™-ker({x;}) = {x;}.

(if) foreach x = y € X, a™-ker({x;}) # a™-ker({y,}) implies a™-ker ({x;}) A a™-ker ({y,}) = Ox.
(iii) for each x = y € X, either x; & a™-ker({y,}) or y, &€ a™-ker({x;}).

(iv) for each x # y € X, then x; & a™-ker({y,}) and y, & a™-ker({x;}).

Proof: (i) Let (X, t) be a Fa™-T,-space. Then (X, t) is a Fa™-T; -space and Fa™-R,-space [by theorem (5.13)]. Hence by
theorem (5.9), a™-ker({x;}) = {x;} for each x € X.

Conversely, let for each x € X, a™-ker({x;}) = {x;}, then by theorem (5.9), (X, 1) is a Fa™-T;-space. Also (X, 1) is a
Fa™-R,-space by assumption. Hence by theorem (5.13), (X, 7) is a Fa™-T,-space.

(i) Let (X,7)be a Fa™-T,-space. Then (X,7)is Fa™-T;-space [by remark (5.5)]. Hence by theorem (5.11), a™-
ker({x;}) Aa™-ker({y,}) = Ox foreachx =y € X.

Conversely, assume that for each x = y € X, a™-ker({x;}) # a™-ker({y,}) implies a™-ker({x;}) A a™-ker({y,}) =
0x. So by theorem (5.11), (X,7) is a Fa™-T;-space, also (X, t) is a Fa™-R,-space by assumption. Hence by theorem
(5.13), (X, 7) isa Fa™-T,-space.
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(iii) Let (X,7)be a Fa™-T,-space. Then (X,t)is a Fa™-T,-space [by remark (5.5)]. Hence by theorem (5.6), either
x; € a™ker({y,}) ory, & a™-ker({x,;}) foreachx # y € X.

Conversely, assume that for each x # y € X, either x; & a™-ker({y,}) or y, € a™-ker({x;}) for each x # y € X. So by
theorem (5.6), (X, t) is a Fa™-T,-space, also (X, 1) is Fa™-R;-space by assumption. Thus (X, 7) is a Fa™-T,-space [by
theorem (5.13)].

(iv) Let (X,7) be a Fa™-T,-space. Then (X,7) is a Fa™-T;-space and Fa™-R,-space [by theorem (5.13)]. Hence by
theorem (5.10), x; & a™-ker({y,}) and y, & a™-ker({x;}).

Conversely, let for each x # y € X then x; € a™-ker({y,}) and y, &€ a™-ker({x;}). Then by theorem (5.10), (X, 1) isa
Fa™-T;-space. Also (X, 1) is a Fa™-R;-space by assumption. Hence by theorem (5.13), (X, 7) is a Fa™-T,-space.

Remark 5.17: Each fuzzy separation axiom is defined as the conjunction of two weaker axioms: Fa™-T;-space = Fa™-
Ry _4-space and Fa™-T;,_,-space = Fa™-R,_;-space and Fa™-T,-space, k = 1,2,3,4.

Theorem 5.18: Let (X, 7) be a fts and a™-ker ({x;}) = {x;} for each x € X then (X, t) is Fa™-Ts-space if and only if it is
a Fa™-R,-space.

Proof: Let (X, t) be a Fa™-T;-space. Then, (X, 7) is a Fa™-R,-space [By remark (5.17)].
Conversely, let (X, 7) be a Fa™-R,-space then it is a Fa™r-space [definition (4.12)(iii)]. By assumption, a™-ker ({x;}) =
{x;} for each x € X, then (X, t) is a Fa™-T, -space [by theorem (5.9)]. Hence by remark (5.17), (X, t) is a Fa™-T5-space.

Theorem 5.19: Let (X,7) be a fts and letx = y € X, implies a™-ker ({x;}) A a™-ker({y,}) = Oy, then (X,7) isa Fa™-
T5-space iff it is a Fa™-R,-space.

Proof: Let (X, 1) be a Fa™-T;-space. Then (X, 7) is a Fa™-R,-space [by remark (5.17)].

Conversely, let (X, 1) be a Fa™-R,-space then it is a Fa™r-space [definition (4.12)(iii)]. By assumption, a™-ker ({x;}) A
a™-ker({y,}) = Oy, for each x # y € X, then by theorem (5.11), (X,7) is a Fa™-T;-space. Hence by remark (5.17),
(X,7) isa Fa™-T;-space.

Theorem 5.20: Let (X, t) be a fts and for each x # y € X either x; € a™-ker({y,}) ory, &€ a™-ker({x;}), then (X, 1)
isa Fa™-Ty-space iff it is a Fa™-R,-space.

Proof: Let (X, t) be a Fa™-T5-space. Then (X, t) is a Fa™-R,-space [by remark (5.17)].

Conversely, let (X, ) be a Fa™-R,-space then it is a Fa™r-space [definition (4.12)(iii)]. By assumption, for each x = y €
X either x; € a™-ker({y,}) ory, &€ a™-ker({x;}). This means either a™-ker({x,}) is weakly ultra fuzzy a™-separated
from {y,} or a™-ker({y,}) is weakly ultra fuzzy a™-separated from {x;}, so by theorem (5.7), (X, 7) is a Fa™-T,-space.
Hence by remark (5.17), (X, 7) is a Fa™-T5-space.

Theorem 5.21: Let (X,7) be a fts and letx # y € X, then x, & a™-ker({y,}) and y, & a™-ker({x;}), (X, t) is a Fa™-
T5-space iff it is a Fa™-R,-space.

Proof: Let (X, t) be a Fa™-T;-space. Then (X, t) is a Fa™-R,-space [by remark (5.17)].

Conversely, let (X, 7) be a Fa™-R,-space then it is a Fa™r-space [definition (4.12)(iii)]. By assumption, for each x # y €
X then x; ¢ a™-ker({y,}) and y, & a™-ker({x;}). Therefore, a™-ker({x;}) is weakly ultra fuzzy a™-separated from
{y,} and a™-ker({y,}) is weakly ultra fuzzy a™-separated from {x;}, so by theorem (5.8), (X, 7) is a Fa™-T;-space.
Hence by remark (5.17), (X, 7) is a Fa™-T5-space.

Remark 5.22: The relation between fuzzy a™-separation axioms can be representing as a matrix. Therefore, the element
a;; refers to this relation. As the following matrix representation shows:
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[1]

[2
(3]
(4]
[8]

[6]
[7]

(8]

[°]
[10]

[11]

[12]

and Fa™-T, | Fa™-T; | Fa™-T, | Fa™-T; | Fa™-T, | Fa™-R, | Fa™-R, | Fa™-R, | Fa™-R4

Fam'Tg Fam'Tg Fam'Tl Fam'Tz Fam'T3 Fam'T4 Fam'Tl de-Tz Fam'R3 Fam'T4

Fam'Tl Fam'Tl Fam'Tl Fam'TZ Fam'T3 Fam'T4_ F(Zm-Tl Fam'Tz Fam'R3 Fam'T4

Fam'Tz Fam'Tz Fam'TZ Fam'TZ Fam'T3 Fam'T4_ Fam'TZ Fam'Tz Fam'R3 Fam'T4

Fam'T3 Fam'T3 Fam'T3 Fam'T3 Fam'T3 Fam'T4_ Fam'T3 F(Zm-T3 Fam'T3 Fam'T4

Fam'T4 Fam'T4 Fam'T4 Fam'T4 F(Zm-T4 Fam'T4 Fam'T4 de-T4 Fam'T4_ Fam'T4

Fam'RO Fam-T1 Fam'Tl Fam'Tz Fam'T3 Fam'T4 Fam'RO Fam'Rl Fam'Rz Fam'R3

Fa™-R, | Fa™-T, | Fa™-T, | Fa™-T, | Fa™-T; | Fa™-T, | Fa™-R, | Fa™-R; | Fa™-R, | Fa™-R;

Fam'RZ F(Xm-T3 Fam'T3 F(Zm-T3 F(Zm-T3 Fam'T4 Fam'Rz Fam'Rz Fam'Rz F(Xm-R?,

Fa™-R; | Fa™-T, | Fa™-T, | Fa™-T, | Fa™-T, | Fa™-T, | Fa™-R; | Fa™-R; | Fa™-R; | Fa™-R;

Matrix Representation
The relation between fuzzy a™-separation axioms
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