O.B.E. (ordinary differential equations)

Chapter 1. Introduction

Definition: A differential equation is an equation which contains derivatives of
the unknown. (Usually it is a mathematical model of some physical phenomenon.)

Two classes of differential equations:

* O.D.E. (ordinary differential equations): linear and non-linear;

» P.D.E. (partial differential equations). (not covered in math250, but in
math251)

Some concepts related to differential equations:

+ system: a collection of several equations with several unknowns.

« order of the equation: the highest order of deriyatives.



e linear or non-linear equations: Let y(t) be the unknown. Then,

ao(t)y™ + a1ty + -+ an(t)y = g(t), (%)

is a linear equations. If the equation can not be written as (%), the it’s
non-linear.

Two things you must know: identify the linearity and order of an equation.

Example 1. Let y(t) be the unknown. Identify the order and linearity of
the following equations.

(a). (y+t)y +y=1,

(b). 3y’ + (t+4)y =t*+y",
(c). ¥y = cos(2ty),

(d). y™W + Vty"” + cost = €.

Answer.
Problem order | linéax?
(a). (y+t)y +y=1 1 No
(b). 3y’ + (t+4)y=t+y" 2 Yes
(c). y" = cos(2ty) 3 No
(d). y® + Vty"” + cost =R\ _4 No

What is a solution? “Sotution\is a function that satisfied the equation and
the derivatives exist.

Example 2. Verify that y(f) = e™ is a solution of the IVP (initial value
problem)

Y = ay, y(0) = 1.
Here y(0) = 1 is called the initial condition.

Answer. Let’s check if y(t) satisfies the equation and the initial condition:

/

Y = ae™ = ay, y(0) =€’ = 1.

They are both OK. So it is a solution.

Example 3. Verify that y(t) = 10 — ce™" with ¢ a constant, is a solution to
vy +y = 10.



Answer.

y = —(—ce™) =ce ™, Y +y=cet+10—ce”t = 10. OK.

Let’s try to solve one equation.

Example 4. Consider the equation

(t+1)y =+
We can rewrite it as (for ¢ # —1)
, t _t2—1+1_(t+1)(t—1)+1_(t_1)+ 1
O N R Pt1 t+1

To find y, we need to integrate y':

y:/y’(t)dt:/[(t—lww%l]dt: A+ 1] + ¢

where c is an integration constant whic
infinitely many solutions.

his means there are

Additional condition: initial con
t =0) Then

1
/l’ndl' = n—Hxn+l+C, (n;«él)
1
/—dx = Inlz|+¢
T
/sina:dx = —cosT+c

/cosxdx = sinx +c

/e‘”dx = e +ec

/axdx - ¢ +c
Ina




Integration by parts:

/udv:uv—/vdu

(flg(®) = f'(g(®)) - g'(t)

Chain rule:
dt
Directional field: for first order equations y' = f(¢,y).

Interpret 3’ as the slope of the tangent to the solution y(t) at point (¢,y) in
the y — ¢t plane.

Example 5. Consider the equation 3’ =

e If y = 3, then ¢ = 0, flat slope,
e If y > 3, then ¢ < 0, down slope,
e If y < 3, then ¢y > 0, up slo
See the directional field below (with s
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As t — oo, we have y — 3.
Example 6. ¢y =t+vy

e We have 3y = 0 when y = —t,



e We have 3/ > 0 when y > —t,

e We have 3/ < 0 when y < —t.
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Chapter 2: First order Differential Equations

We consider the equation

dy
E_f(tay)

Overview:

e Two special types of equations: linear, and separable;
e Linear vs. nonlinear;
e modeling;

e autonomous equations.

2.1: Linear equations; Method of integrating
factors

The function f(¢,y) is a lineat\function, in y, i.e, we can write

Fitw) ="=p(t)y + g(t).

So we will study the equation
y'+p(t)y = g(t). (4)

We introduce the method of integrating factors (due to Leibniz): We multiply
equation (A) by a function u(t) on both sides

p(t)y" + pt)p(t)y = u(t)g(t)

The function p is chosen such that the equation is integrable, meaning the
LHS (Left Hand Side) is the derivative of something. In particular, we re-
quire:

p(t)y +ppt)y = (u@)y), = p)y +pb)pt)y = pt)y' +p'(t)y



which requires

Integrating both sides
In pu(t) = /p(t) dt

which gives a formula to compute p

p(t) = exp (/p(t) dy) :

Therefore, this u is called the integrating factor. Putting back into equation
(A), we get

d

%(u(ﬂy) = u(t)g(t), p(t

which give the formula for the solution

o= [ [ wtorgteydo+e u(t) = exp ( [»t0 dt) |
O
Example 1. Solve =b\a0).

Answer. We have p(t) and-’g(t)

SO

b b
y=e / ebdt = e ™ (—e“t + c) = - +ce ™,
a a

where c is an arbitrary constant.

Example 2. Solve ¢ +y = e*.
Answer. We have p(t) = 1 and g(t) = e*. So

pu(t) = eXp(/ 1dt) =¢'
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and
1 1
y(t) =e* / ete?t dt = e / eStdt = et (ge?’t + c) = §62t + cet.

Example 3. Solve
(1+#)y +4ty=(1+t)72  y(0)=1.
Answer. First, let’s rewrite the equation into the normal form

y + y=(1+t)"2

4t
14 ¢2
SO
t) = —— 1+t
Then

(14 %)%,

I
@
»

N

[\
5

~—~

—_

Then

B arctant + c

= (14+tH)72 [ (1+¢*
Yy ("‘) (+ (1—|—t2)2

By the IC y(0) = 1:

O+c¢ L = () arctant + 1
g = C g s = -
Y (1+2)?

Example 4. Solve ty' —y = t?e~!, (t > 0).
Answer. Rewrite it into normal form
1
/ _ — te—t
Yy ty

p(t) = —1/t, g(t) =te "



We have 1
wu(t) = exp(/(—l/t)dt) =exp(—Int) = 7

and .

Example 5. Solve y — 3y = e, with y(0) = a, and discussion how the
behavior of y as t — co depends on the initial value a.

Answer. Let’s solve it first. We have

lu = e 3
SO
Yy = eét/e_éte_tdt — st / e 3ldt = e3 +c)
Plug in the IC to find ¢ S
3 3
y(O):eO(—Z c:a—l—z
SO

on, we see that it contains two terms. The
grows. The second term e/3 goes to co as t
is multiplied on it. So we have

To see the behavior o
first term e~* goes to 0
grows, but the constant a +

° Ifa+%:0,i.e.,ifa:—%,wehavey—>0ast—>oo;
° Ifa+%>O,i.e.,ifa>—%,wehavey—>ooast—>oo;

° Ifa+%<O,i.e.,ifa<—%,wehavey—>—ooast—>oo;

Example 6. Solve ty’ + 2y = 4t%, y(1) = 2.

Answer. Rewrite the equation first

2
y’+;y=4t, (t#0)



So p(t) =2/t and ¢(t) = 4t. We have

wu(t) = exp(/ 2/tdt) = exp(2Int) = 12

and
y(t) =12 /4t dy =t (t 4 ¢)

By IC y(1) = 2,

we get the solution:

Note the condition ¢ > 0 comes from the fact th ve_initial condition is

given at t = 1, and we require t # 0.

In the graph below we plot several solutions in the y plan, depending on
initial data. The one for our solution is ted with\dashed line where the
initial point is marked with a ‘z’.

10
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2.2: Separable Equations

We study first order equations that can be written as

M(x)
N(y)

where M(z) and N(y) are suitable functions of x and y only. Then we have

dy B

Ny =@y dr, = [ N)dy= [ s da
and we get implicitly defined solutions of y(z).

Example 1. Consider

dy  sinz
de 1 —x?
We can separate the variables: 0
/(1—y2)dy:/sinx — 23 = —cosz +c.

If one has IC as y(7) = 2,

1 )
y—§y3+cosx+§:0.

Example 2. Find the solution in explicit form for the equation

dy 32 +4x+2

w - ayrn o MO

Answer. Separate the variables
/Q(y— 1)dy=/(3x2+4a:+2)dx, = (y—1)?=2"+22"+2r +c

11



Set in the IC y(0) = —1, i.e., y = —1 when = = 0, we get
(-1 -1)*=0+c¢, c =4, (y —1)* = 2% + 227 + 22 + 4.
In explicitly form, one has two choices:

y(t) = 1+ Va3 + 222 + 22 + 4.

To determine which sign is the correct one, we check again by the initial
condition:
y0)=14+Vi=1+2=-1

We see we must choose the ‘-” sign. The solution in explicitly form is:

y(r) =1— Va3 + 222 + 22 + 4.
On which interval will this solution be defined?
P+ 207 +204+4>0, = 2*(r+2) +2)>0

= \3 -2
1<.>At this point |dy/dz| —

oint.

= (22 +2)(z+2)

We can also argue that when x = —
00, therefore solution can not be

The plot of the solution is given belo he initial data is marked with

‘x’. We also include the SOWth the+’ sign, using dotted line.
10 VO
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Example 3. Solve y/ = 322 + 32%y?, y(0) = 0, and find the interval where
the solution is defined.

Answer. Let’s first separate the variables.

1
1+ y?

d
V321447, = /

7 dy = /33@2 dr, = arctany = 2°+c.
x

Set in the 1C:
arctan0=04+c¢, = ¢=0
we get the solution

arctany = 2°, = y = tan(z?).

3:

Since the initial data is given at x = 0, i.e., is defined on the

interval (-7, %), we have

/(3y2 — by)dy = /(1 +32%)dr P -3yt =z +2° +c
Set in the IC: x =0,y = 1, we get
1-3=¢, = c=-2

Then,
=3yt =2 -1 -2
Note that solution is given in implicitly form.

To find the valid interval of this solution, we note that 3’ is not defined is
3y? — 6y = 0, i.e., when y = 0 or y = 2. These are the two so-called “bad

13



points” where you can not define the solution. To find the corresponding
values of x, we use the solution expression:

y=0: 24+2—-2=0,

= (@P+2+2)@z-1)=0 = z=1
and
y=2: 2°+1-2=-4, = +2+2=0,

= (@@-z+2)(x+1)=0, = z=-1
(Note that we used the facts 2® + 2 +2 # 0 and 2® — 2 + 2 # 0 for all x.)

Draw the real line and work on it as following:

Therefore the interval is —1 < z

14



2.4: Differences between linear and nonlinear
equations

We will take this chapter before the modeling (ch. 2.3).

For a linear equation

y +pt)y=gt),  ylto) = wo,

we have the following existence and uniqueness theorem.

Theorem . If p(t) and g(t) are continuous and bounded on an open interval
containing t,, then it has an unique solution on that interval.

Example 1. Find the largest interval where the $olttioirean be defined for
the following problems.

(A). ty +y =1t y(—1) = 3.
Answer. Rewrite: y' + %y = 12, so t A O\ Since by = —1, the interval is
t <0.
(B). ty' +y =13, y(1) = —3.
Answer. The equation is sawie as (A), sot # 0. ¢y = 1, the interval is ¢t > 0.
(C). (t—3)y + (Int)y=2¢t, y(Ih=2

a7 2

Answer. Rewrite: y"™No\250=<\;73, so t # 3 and ¢ > 0 for the In function.

Since ty = 1, the intervalNig\then 0 < ¢ < 3.

(D). ¥ + (tant)y = sint, y(7) = 100.

Answer. Since ty = m, and for tant to be defined we must have t # @w,
k==41,42,---. So the interval is 2 < ¢ < 2.

For non-linear equation

y, = f(ta y)a y(tO) = Yo,

we have the following theorem:

Theorem . If f(t,vy), g—g(t, y) are continuous and bounded on an rectangle
(v <t < fB,a <y <b) containing (g, o), then there exists an open interval
around ty, contained in (v, ), where the solution exists and is unique.

15



We note that the statement of this theorem is not as strong as the one for
linear equation.

Below we give two counter examples.

Example 1. Loss of uniqueness. Consider

dy _ __t o)
a fty) ” y(=2) =0.

We first note that at y = 0, which is the initial value of y, we have ' =
f(t,y) — oo. So the conditions of the Theorem are not satisfied, and we
expect something to go wrong.

Solve the equation as an separable equation, we

/ydy:—/tdt, y? 4t

44and y = £v/4 — 2. Both

and by IC we get ¢ = (—=2)?+0=4, 50 y

Note that f(t,y) = y*
non-linearity of f, solutio

defined for all t and y. But, due to the
n not be defined for all t.

This equation can be easily solved as a separable equation.

1 1 -1
“dy= [ dt S t) = .
/yQy / , , +c, y(t) e

By IC y(0) =1, we get 1 = —1/(0 4 ¢), and so ¢ = —1, and

y(t) = %

We see that the solution blows up as t — 1, and can not be defined beyond
that point.

This kind of blow-up phenomenon is well-known for nonlinear equations.

16



2.3: Modeling with first order equations

General modeling concept: derivatives describe “rates of change”.
Model I: Exponential growth/decay.
Q(t) = amount of quantity at time ¢

Assume the rate of change of Q(t) is proportional to the quantity at time ¢.
We can write

Cil—cf(t) =r-Q(1), 7 : rate of growth/decay

If r > 0: exponential growth
If » < 0: exponential decay

Differential equation:
Q' =rQ, Q0)=0Qo.

Solve it: separable equation.

i — _ rt+c __ rt
/QdQ—/rdt, = In Qt) = e =ce

Here r is called the growth By IC, et Q(0) = C' = Q. The solution

is Q
= Qoe™".

Two concepts:

e Doubling time T (only if 7 > 0): is the time that Q(Tp) = 2Q.
rT rT In2
Q(Tp) = Qoe" P = 2Q, e’ =2 rIp=mh2 Tp=—.

r

e Half life (or half time) T (only for » < 0): is the time that Q(Ty) =
1
3 Q@o-
2

1 1 1 In 2
Q(TH) = Qoe’™ = 5@0, e"’r = 3 rTp = 1115 =—-In2, Tp= f—r

Note here that Ty > 0 since r < 0.

17



NB! Tp, Ty do not depend on )y. They only depend on r.

Example 1. If interest rate is 8%, compounded continuously, find doubling
time.

Answer. Since r = 0.08, we have Tp = _(l)nog-

Example 2. A radio active material is reduced to 1/3 after 10 years. Find
its half life.

Answer. Model: % = r@, r is rate which is unknown. We have the solution

Q(t) = Qoe™. So
10 o 1 10r __ 1
Q( ) = §Q07 Qoe" = §Q07

To find the half life, we only need the rate r

total amount after 40 years.

compounded continuou

Answer. Set up the modek Let S(t) be the amount of money after ¢ years

d
Eizzcyoss-%zooo, S(0) = 2000.

This is a first order linear equation. Solve it by integrating factor

S’ —0.08S = 2000, p = e 008

S(t) = "0 / 2000 - e~ % dt = ™05 12000 o +c| = 2000 + et 0%
—0.08 —0.08

By IC,

2000 1
_ 2 o = 2000(1 + ——) = 2
S(0) = g T¢=2000,  C'=2000(1 + 52) = 27000,

18



we get
S(t) = 27000e*% — 25000.

When t = 40, we have
S(40) = 27000 - ¢*2 — 25000 ~ 637, 378.
Compare this to the total amount invested: 2000 + 2000 % 40 = 82, 000.

Example 4: A home-buyer can pay $800 per month on mortgage payment.
Interest rate is 9% annually, (but compounded continuously), mortgage term
is 20 years. Determine maximum amount this buyer can afford to borrow.

Answer. Set up the model: Let Q(t) be the amount borrowed (principle)
after t years
dQ

% _ 0
— = 0.09Q() — 800 % 1

The terminal condition is given Q(20) = 0. We must find Q(0).

Solve the differential equation:

Q' —0.09Q =

Q(t) = "0 /(—9600)6_0'09tdt = e 0 o +c| = 9600 + ce%0%
B B —0.09 0.09
By terminal condition O
9600
20) = 0= = —
@(20) 0 0.09 - e¢l8

so we get

T 9600 9600 o0,
0.09  0.09-e®

Q(t)

Now we can get the initial amount

9600 9600 9600, i, _
=500 009 eF ~ oo L€ ") A 89,034.79.

Q(0)

Model IIT: Mixing Problem.

Example 5. At t = 0, a tank contains )y 1b of salt dissolved in 100 gal of
water. Assume that water containing 1/4 lb of salt per gal is entering the
tank at a rate of r gal/min. At the same time, the well-mixed mixture is
draining from the tank at the same rate.

19



(1). Find the amount of salt in the tank at any time ¢ > 0.

(2). When t — oo, meaning after a long time, what is the limit amount

Qr?

Answer. Set up the model:

Q(t) = amount (Ib) of salt in the tank at time ¢ (min)
In-rate: r gal/min x 1/4 1b/gal = 7 Ib/min

Out-rate: r gal/min x Q(t)/100 1b/gal = << 1b/min

100
Q

o = [In-rate] — [Out-rate] = 2 — ﬁ@, IC. Q(0) = Qo.

(1). Solve the equation
”

/ _r _ (/19
Q¢ =1 MH=c¢

Q(t) — ¢ (r/100)¢ / %e(r/mo)tdt — e (r/100) 10 Lol = 25+ce_(r/100)t.
"
By IC
c= Qo — 25,
we get
0— 25)6_(T/100)t.
(2). Ast — oo, the exp erm goes to 0, and we have

Q1 = Jim Q(t) = 25Ib.

Example 6. Tank contains 50 1b of salt dissolved in 100 gal of water. Tank
capacity is 400 gal. From ¢ = 0, 1/4 1b of salt/gal is entering at a rate of 4
gal/min, and the well-mixed mixture is drained at 2 gal/min. Find:

(1) time ¢ when it overflows;
(2) amount of salt before overflow;

(3) the concentration of salt at overflow.

20



Answer. (1). Since the inflow rate 4 gal/min is larger than the outflow rate
2 gal/min, the tank will be filled up at ¢;:

400 — 100
(2). Let Q(t) be the amount of salt at ¢ min.

In-rate: 1/4 Ib/gal x 4 gal/min =1 lb/min

Out-rate: 2 gal/min x 100+2t Ib/gal = 50+t 1b/min
dq Q
— =1-— —Q = 0) =50
dt 50 +t’ Q'+ 50+tQ Q)
= exp /mdt = exp(In(50 0+¢
1
t)dt = —t?
Q(t) = 50 (50 +t) [50 5 + |
By IC: 0
500,
We get

(3). The concentrati flow time ¢ = 150 is

Q(150) g0,
400 \>400(50 + 150)

17
= —'Ib/gal
5110/8

Model IV: Air resistance

Example 7. A ball with mass 0.5 kg is thrown upward with initial velocity
10 m/sec from the roof of a building 30 meter high. Assume air resistance is
|v|/20. Find the max height above ground the ball reaches.

Answer. Let S(t) be the position (m) of the ball at time ¢ sec. Then, the
velocity is v(t) = dS/dt, and the acceleration is a = dv/dt. Let upward be
the positive direction. We have by Newton’s Law:

) ) dv

:—g——:_

F: _ — — —
Mma==mg =55 20m  di

21



Here g = 9.8 is the gravity, and m = 0.5 is the mass. We have an equation

for v: J .
v
i 101} 9.8 0.1(v 4+ 98),

SO

1
/U+98dv:/(—0.1)dt, = Injv+98 =—-0.1t+c

which gives
v4+98=ce " = = —-98+ce ",

By IC:
’U(O) = —-98 +c = ]_0, Cc = ]_08’ = v = —98 + 1086_0'”.

To find the position S, we use S’ = v and integra

t = —98t 4+ 108 " /(-0.1) + ¢

&

S(t) = / ot) dt = / (=98 + 108¢ 01
By IC for S,
S(0) = —1080 + ¢ = 30,

At the maximum height, we . Ilet’s find out the time T" when max
height is reached.

v(T) =0, —98+1 0, 98 =108 ¢ %17 =98/108,
—0.17 = In(98/10 T = —101n(98/108) = In(108/98).
So the max height S is
108 ~0.11n(108/98)
Sy = S(T) = —980 In o= — 1080e™" + 1110

108
= 98010 — 1080(98/108) + 1110 ~ 3478 m.

Other possible questions:

e Find the time when the ball hit the ground.
Solution: Find the time t =ty for S(tg) = 0.

22



e Find the speed when the ball hit the ground.
Solution: Compute |v(tg)|.

e Find the total distance traveled by the ball when it hits the ground.
Solution: Add up twice the max height S); with the height of the
building.

23



2.5: Autonomous equations and population dy-
namics

Definition: An autonomous equation is of the form y' = f(y), where the
function f for the derivative depends only on y, not on t.

Simplest example: y' = ry, exponential growth/decay, where solution is
y = yoe™.

Definition: Zeros of f where f(y) = 0 are called critical points or equilibrium
points, or equilibrium solutions.

Why? Because if f(yg) = 0, then y(t) = yo is a constant solution. It is called
an equilibrium.

Question: Is an equilibrium stable or unstable?

Example 1. ¢ = y(y — 2). We have two,critical poinfs: y; =0, y = 2.

'y

25F

15-

. . . . . .
0 0.5 1 15 2 25 3 0 0.5 1 15 2
y t

We see that y; = 0 is stable, and y = 2 is unstable.

Example 2. For the equation y' = f(y) where f(y) is given in the following
plot:

24
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e (A). What are the critical points?

e (B). Are they stable or unstable?

e (C) Sketch the solutions in t nd describe the behavior of

We see that y; = 1 is stable, yo, = 3 is unstable, and y3 = 5 is stable.

25



(C). The sketch is given below:

6

>3

If y(0) = 3, then y(t) = 3;

If 3 <y(0) <5, then y(t) — 5;

If y(0) = 5, then y(t) = 5;

if y(t) > 5, then y(t) — 5.

Stability: is not only stable or unstable.

Example 3. For ¢/ = y?, we have only one critical point y; = 0. For y < 0,
we have ' > 0, and for y > 0 we also have 3’ > 0. So solution is increasing

26



on both intervals. So on the interval y < 0, solution approaches y = 0 as t
grows, so it is stable. But on the interval y > 0, solution grows and leaves
y = 0, and it is unstable. This type of critical point is called semi-stable.
This happens when one has a double root for f(y) = 0.

Example 4. For equation 3y’ = f(y) where f(y) is given in the plot

2

15k

-0.51

Answer. (A). y =0,y =1,y =2,y = 3 are the critical points.

(B). y = 0 is stable, y = 1 is semi-stable, y = 2 is unstable, and y = 3 is
stable.

(C). The Sketch is given in the plot:

27
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t

(D). The asymptotic behavior as ¢ — oo depends initfal data.

e If y(0) <1, then y — 0;
o If 1 <y(0) <2, then y — 1;
o If y(0) =2, then y(t) =

o If y(0) > 2, then y —

Application in populatio ics: let y(t) be the population of a species.

d

d_?i = (r —ay)y. the logistic equation
dy y r
12 k= —

r=intrinsic growth rate,
k=environmental carrying capacity.

critical points: y =0, y = k. Here y = 0 is unstable, and y = k is stable.
If 0 < y(0) < k, then y — k as t grows.
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Chapter 3: Second Order Linear Equations

General form of the equation:

as(t)y” + a1 (t)y' + ao(t)y = b(t),

where
as(t) # 0, y(to) = yo, ¥'(to) = To.

If b(t) = 0, we call it homogeneous. Otherwise, it is called non-homogeneous.

3.1: Homogeneous equations with constant co-
efficients

This is the simplest case: asq, ai, ag are alkconstants) and g = 0. Let’s write:

a2y’ + a1y’ + ey =N0.

Example 1. Solve y’ =y =0, (we haweshere as = 1,47 = 0,a9 = 1).

Answer. Guess y;(t) = €.

Check: y" = €, so y/=4 = el \- 6= 0, ok.

Guess another: yo(t) =\l

Check: 3y = —e™, so ¢y =

,s0y’ —y=¢e'—e' =0, ok.

Observation: Another function y = cjy; + coys for any arbitrary constant
1, ¢ (this is called a “linear combination of yi,y».) is also a solution.

Check:

¢ —t
Yy = 1€ + e 7,

then
¢ ¢

Y =cef —cet, Y =cie teet, = Yy —y=0.
Actually this is a general property. It is called the principle of superposition.
Theorem Let yy(t) and ys(t) be solutions of
as(t)y" 4+ a1 (t)y' + ao(t)y =0
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Then, y = c1y1 + Caya for any constants c1, ¢y is also a solution.

Proof: If y; solves the equation, then
ax(t)y) + ar1(t)y) + ao(t)yr = 0. (1)
If y5 solves the equation, then

az(t)yy + a1 (t)ys + ao(t)y2 = 0. (1)
Multiple (I) by ¢; and (II) by ¢y, and add them up:
az(t)(cryr + c2y2)” + a1 (t)(c1y1 + cay)' + ao(t)(c1ys + caya) = 0.
Let y = c1y1 + c2y2, we have

as(t)y" + a1(t)y +ao(t)y =

therefore y is also a solution to the equat

Since y # 0, we get

asm?> +ayrt +ap =0

This is called the characteristic equation.

Conclusion: If 7 is a root of the characteristic equation, then y = € is a
solution.

If there are two real and distinct roots r; # 79, then the general solution is
y(t) = cre™ 4+ cpe™" where ¢y, ¢p are two arbitrary constants to be determined
by initial conditions (ICs).

Example 2. Consider y” — 5y’ + 6y = 0.

e (a). Find the general solution.
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e (b). If ICs are given as: y(0) = —1,¢/(0) = 5, find the solution.

e (¢) What happens when t — 0o?

Answer. (a). The characteristic equation is: 7> —5r+6 =, so (r—2)(r—3) =
0, two roots: r1 = 2,ry = 3. General solution is:

y(t) = cre* + coe™.

(b). y(0) = —1 gives: ¢; + o = —1.

y'(0) = 5: we have y = 2¢1e* + 3cze, s0 y/(0) = 2¢; + 3co = 5.

Solve these two equations for ¢, co: Plug in ¢ = —1 — ¢; into the second
equation, we get 2¢; +3(—1—¢y) = 5,50 ¢; = —8. n co = 7. The solution

is
y(t) = —8e* + 7e.

(c). We see that y(t) = €' - (=8 + tet),
infinity as t grows. So y — 00.

oth terms in the product go to

&

Example 3. Find the solution for 2y 3" =y = 0, with initial conditions

y(1) =0, y'(1) =3.

Answer. Characteri

1
2 +r—1=0, 2r=1)(r+1)=0, = n=g, r=-1
General solution is: )
y(t) = cre? + cpe .

The ICs give )

y(1) =0: cre? + et =0. (A)

1 1
y()=3: ¢(t)= §cle%t — e §cle% — et =3 (B)

(A)+(B) gives

N

3 1
2616 s C1 (&

Plug this in (A):

N

1
—e2ez2e2 = —2e.

Q
)
|
|
[
o
-
Q
N
I
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The solution is
11 —t La—-1) —t+1
y(t) = 2e 26575 — 2ee”" = 2ez —2e
and as t — oo we have y — oo.
Summary of receipt:

1. Write the characteristic equation;
2. Find the roots;
3. Write the general solution;

4. Set in ICs to get the arbitrary constants ¢

r = _\/37 Ty = \/_

General solution is
—V5t -+ Co eﬁt.

y(t) = ce
(b). If y(¢) remains bounded as t — oo, then the term eV must vanish,
which means we must have ¢, = 0. This means y(t) = cie™ V5. If y(0) = 1,
then y(0) = ¢; = 1, so y(t) = e V3. This gives y/(t) = —v/5e~ V5" which
means y'(0) = —/5.

Example 5. Consider the equation 2y” + 3y’ = 0. The characteristic equa-
tion is
3

2r +3r=0, = r(2r+3)=0 = 7“1:—5,7‘2:0
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The general solutions is

0t

y(t) = cle_%t + cpe”t = cle_%t + cs.

As t — o0, the first term in y vanished, and we have y — c¢,.

Example 6. Find a 2nd order equation such that c;e® 4 coe™ is its general
solution.

Answer. From the form of the general solution, we see the two roots are
ry = 3,79 = —1. The characteristic equation could be (r — 3)(r +1) =0, or
this equation multiplied by any non-zero constant. So 72 —2r — 3 = 0, which

gives us the equation
y" — 2y — 3y = 0.

NB! This answer is not unique. Multiple it by an n-zero constant gives
another equation.
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3.2: Solutions of Linear Homogeneous Equa-
tions; the Wronskian

We consider some theoretical aspects of the solutions to a general 2nd order
linear equations.

Theorem . (Existence and Uniqueness Theorem) Consider the initial value
problem

y' o)y +aq)y =g®),  ylto) =wo, ¥'(te) = %o

If p(t),q(t) and g(t) are continuous and bounded on an open interval I con-
taining to, then there exists exactly one solution {{t)~of this equation, valid
on I.

Example 1. Given the equation
(1 = 3t)y" +ty — (t + 3y \\vD =2, ¢ (1)=1

Find the largest interval where solutionis _valid.

Answer. Rewrite the equation iuto the proper form:

//+ t /_ t+3 _eit
Y3 -3 T tr—3)
so we have
t t+3 et

We see that we must have t # 0 and ¢ # 3. Since ty = 1, then the largest
interval is 1 = (0,3), or 0 <t < 3. See the figure below.

<+

0

—_ 4

O ¥
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Definition. Given two functions f(t), g(t), the Wronskian is defined as
W(f,9)(t) = fd' = f'g.

Remark: One way to remember this definition could be using the determi-
nant,
_| [y

W(f> g)(t) - f/ g/

Main property of the Wronskian:

o If W(f,g) =0, then f anf g are linearly dependent.

e Otherwise, they are linearly independent.

Example 2. Check if the given pair of func sge linearly dependent or
not.

(a). f=¢€, g=¢e"

Answer. We have

so they are linearly indep
(b). f(t) =sint, g(t) = cost.
Answer. We have

W (f,g) =sint(sint) — costcost = —1 # 0

and they are linearly independent.
(c). f(t)=t+1, g(t) =4t +4.

Answer. We have
W(f,g)=@t+1)4—(4+4)=0

so they are linearly dependent. (In fact, we have g(t) =4 - f(¢).)
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(d). f(t) =2t, g(t) = [t].
Answer. Note that ¢'(f) = sign(¢) where sign is the sign function. So

W(f,g)=2t-sign(t) —2|t| =0

(we used ¢ - sign(t) = [t|). So they are linearly dependent.

Theorem . Suppose yi(t),ya2(t) are two solutions of
y' +pt)y +q(t)y =0.

Then

(1) We have either W (y1,y2) =0 or W(y1,y2) n
(I1) If W (y1,y2) # 0, the y = c1yq + cmhe geneval solution. They are

also called to form a fundamental solutionis. As a consequence,
; N, V.

for any ICs y(to) = yo, v (to a unique set of (c1,co) that

give a unique solution.

The next Theorem is proba e m@ important one in this chapter.

Theorem (Abel’s The

to y" +p)y + q(t)y =
W(y1,y2) on I is given by

1, Y2 be two (linearly independent) solutions
on an open interval I. Then, the Wronskian

W (o, 02)(0) = C x| =p(t) ).
for some constant C' depending on y1,yo, but independent on t in I.

Proof. We skip this part. Read the book for a proof.

Example 3. Given

thy —t(t+2)y + (t+2)y = 0.
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Find W (y,,y2) without solving the equation.
Answer. We first find the p(t)

t+2
plt) = =

which is valid for ¢ # 0. By Abel’s Theorem, we have

Wy, y2) = C - exp(/ p(t)dt) = C - exp /ﬂdt Cet+2mn

= Ct%e".
NB! The solutions are defined on either (0, 00) or (—o0,0), depending on .

From now on, when we say two solutions ¥y, y» of the solution, we mean two
linearly independent solutions that can form a fun tal set of solutions.

Example 4. If y, yo are two solutions o

and W (y1,y2)(1) = 2, find Wy, 93

Answer. First we find that'p(t) = 2/% Abel’s Theorem we have

W (y1, y2)(

If Wiyr,y2)(1) = 2, then

Example 5. If W(f,g) = 3¢*, and f = €%, find g.

Answer. By definition of the Wronskian, we have
W(f’g) — fg/ . flg — 62tgl _ 262tg — 3€4t,
which gives a 1st order equation for g:

g —2g = 3e*.

37



Solve it for g:

plt)y=e?, g(t)=e* / e 3e* dy = * (3t + c).
We can choose ¢ = 0, and get g(t) = 3te?.

Next example shows how Abel’s Theorem can be used to solve 2nd order
differential equations.

Example 6. Consider the equation y” + 2y’ +y = 0. Find the general
solution.

Answer. The characteristic equation is r2 + 2r
roots 1, = ro = —1. So we know that y; = e i
find another solution s that’s linearly independen

= 0, which given double
ions. How can we

By Abel’s Theorem, we have
Wy, y2) =C

and we can choose C' =1
Wronskian, we have

W(y17y2) =

These two computation have the same answer, so

ey typ) =€, yhtypp=c

This is a 1st order equation for y,. Solve it:
plt)=e',  p(t) = e‘t/ete‘t dt =e”'(t +c).

Choosing ¢ = 0, we get y, = te'. The general solution is

y(t) = cryn + coyp = cre !t + cote™.

This is called the method of reduction of order. We will study it more later
in chapter 3.4.
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3.3: Complex Roots

The roots of the characteristic equation can be complex numbers. Consider
the equation

ay” + by + cy =0, - ar*+br+c=0.

The two roots are

—b+Vb? —4dac
2a ’

If v» — 4ac < 0, the root are complex, i.e., a pair of complex conjugate
numbers. We will write 7y 2 = X\ £ ip. There are two solutions:

T2 =

Y = €(A+iu)t — 6)\t€iut, Yo = 1yp = 6( _ 6)\t€_iut.
To deal with exponential function with pure imag exponent, we need
the Euler’s Formula:
A couple of Examples to practice
i n 1
e —— +i=.
2
Back to y1, y2, we have
y1 = eM(cos pt 4 isin pt), Yy = eM(cos pt + isin pt).

But these solutions are complex valued. We want real-valued solutions! To
achieve this, we use the Principle of Superposition. If y;, ys are two solutions,
then £(y1 + ¥2), 2 (41 — y2) are also solutions. Let

o1 | .
U = §(y1 + 15) = M cos pt, Us = Z(yl —19) = e sin pt.
To make sure they are linearly independent, we can check the Wronskian,

W (g, J2) = pe** # 0. (home work problem).
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So y1, Yo are linearly independent, and we have the general solution

A

y(t) = creM cos pt + coeM sin put = e (cy cos pt + ¢y sin pt).

Example 1. (Perfect Oscillation: Simple harmonic motion.) Solve the initial
value problem

T
Yy =0 y(E) =0, Yl
Answer. The characteristic equation is

r?4+4=0 = r=%42 = =2.

The general solution is

y(t) = c¢q cos 2t

264>

€1 8in 2t + 2¢4 cos 2t, we have

1 V3

Find ¢y, ¢o by initial conditions: si

7-‘- .
y(g):O +c 1n§2501+702:07
m 7r V3 1
y,(g) = 1 202 COSg = —2C17 —|— 2025 —_— 1

Solve these two equations, we get ¢; = _\/Tg and ¢y = i. So the solution is
3 1
y(t) = _\/T_ cos 2t + 1 sin 2t,

which is a periodic oscillation. This is also called perfect oscillation or simple
harmonic motion.

Example 2. (Decaying oscillation.) Find the solution to the IVP (Initial
Value Problem)

y" 42y + 101y = 0, y(0)=1, ¢'(0)=0.



Answer. The characteristic equation is
24 2r+101=0, = 7rip=-1+£10i, = I=-1, u=10.
So the general solution is
y(t) = e (¢ cos 10t + ¢, sin 10t),

S0
y'(t) = —e (cy cost + cysint) + e *(—=10c; sint + 10cy cost)

Fit in the ICs:

Solution is

y(t) = e *(cost
The graph is given below:

. NN\
0.8*"'.‘ \ |
- o

0.6 .

0.4t 1

0.2t e ‘ ]

_1‘ 1 1 1 1 1 1 1

0 0.5 1 15 2 25 3 35 4

We see it is a decaying oscillation. The sin and cos part gives the oscillation,
and the e~ part gives the decaying amplitude. As t — oo, we have y — 0.
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Example 3. (Growing oscillation) Find the general solution of y"” — ¢/ +
81.25y = 0.

Answer.
r? —r+81.25 =0, = r=05+9, = AX=05 pu=2
The general solution is
y(t) = e®%(c; cos 9t + ¢y 8in 9t).

A typical graph of the solution looks like:

We see that y oscillate with growing amplitude as ¢ grows. In the limit when
t — 0o, y oscillates between —oo and +o0.

Conclusion: Sign of A, the real part of the complex roots, decides the type
of oscillation:

e )\ = 0: perfect oscillation;

e )\ < 0: decaying oscillation;
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e )\ > 0: growing oscillation.

We note that since A = ;—;’, so the sign of A follows the sign of —b.
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3.4: Repeated roots; reduction of order

For the characteristic equation ar?+ br + ¢ = 0, if v* = 4ac, we will have two

repeated roots
b

—5
We have one solution y; = ™. How can we find the second solution which
is linearly independent of y;?

7”1:7’2:7’:

Example 1. Consider the equation 3”44y’ +4y = 0. We have r?+4r+4 = 0,
and r; =1y =7 = —2. So one solution is y; = e~?*. What is 1,7

Method 1. Use Wronskian and Abel’s Theorem. By Abel’s Theorem we
have

W (y1,y2) = cexp(— /4dt) =ce M =¢ 1).
By the definition of Wronskian we have
W (g1, y2) = 1y — Yoo = €24, _2t$: e > (v + 2ua).

Let C =0, we get yo = te~%, and the general solution is

y(t) = ciyr + coyp = cre 2 4 cote™™.

Method 2. This is the textbook’s version. We guess a solution of the form
Yo = v(t)y; = v(t)e 2, and try to find the function v(t). We have

yh =v'e ? +u(—2e ) = e (v - 2v), yh = e (V" — 4 + dv).
Put them in the equation

e (V" — 4 + ) + de (v — 20) +du(t)e * = 0.
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2

Cancel the term e=%, and we get v = 0, which gives v(t) = cit + ¢2. So

ya(t) = vyy = (a1t + ca)e ™ = cite ™ + e .

Note that the term cye=% is already contained in cy;. Therefore we can choose
c1 = 1,c5 = 0, and get y» = te~ !, which gives the same general solution as
Method 1. We observe that this method involves more computation than
Method 1.

A typical solution graph is included below:

25

15

0.5

0 ‘
0o 05 1 \Jé 2 25 3 35 4 45 5

We see if ¢o > 0, y increases for small t. But as t grows, the exponential
(decay) function dominates, and solution will go to 0 as t — oc.

One can show that in general if one has repeated roots r; = ry = r, then
y1 = € and y, = te', and the general solution is

y=cie" + cotr’ = " (1 + eat).

Example 2. Solve the IVP

y' =2y +y=0, y(0) =2, y'(0)=1.



Answer. This follows easily now
P—2r+1=0, = r=ro=1 = y(t)=(c1+ cst)e".

The ICs give
y0)=2: ¢+0=2 = ¢ =2

Y (t) = (c1 +cat)e' +ee’, Y (0)=ci+e=1 = cp=1-c¢ =-1.
So the solution is y(t) = (2 — t)e'.

Summary: For ay” + by’ +cy = 0, and ar? + br + ¢ = 0 has two roots ry, s,
we have

o If (&1 % T2 (real): y(t) — cle’"lt + 0267"215;

o If ry =ry =1 (real):

o If ri 9 = X\ % ip complex:

given one solution y; = %, find a second linearly independent solution.

Answer. Method 1: Use Abel’s Theorem and Wronskian. By Abel’s
Theorem, and choose C' = 1, we have

W (y1,y2) = exp {—/p(t) dt} = exp {—/%dt} — exp {—glnt} =732,

By definition of the Wronskian,

1 1 B
W (y1,42) = y1ys — Y1¥j2 = ;yé — (=g =t 3/2
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Solve this for ys:

1,25

1 1
= exp(/ ;dt) =exp(Int) =t, = y= - /t A dE = §(§t§ +O).

Let C' = 0, we get y, = %x/f Since 2 is a constant multiplication, we can

3
drop it and choose y, = V.

Method 2: This is the textbook’s version. We saw in the previous example
that this method is inferior to Method 1, therefore we will not focus on it at
all. If you are interested in it, read the book.

Let’s introduce another method that combines the-ddeas from Method 1 and

Method 2.

Method 3. We will use Abel’s Theorem, and at t
a solution of the form y; = vy;.

By Abel’s Theorem, we have ( worked M1 (y1,y2) = 3. Now,
seek 15 = vy;. By the definition o

Drop the constant %, we get

N

Y2 = vy =t2— =12.

We see that Method 3 is the most efficient one among all three methods. We
will focus on this method from now on.

Example 4. Consider the equation
Py —tt+2)y + (t+2)y=0, t>0.
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Given y; = t, find the general solution.

Answer. We have

t(t+2) t+2 2

) = — — —_1-Z
p(t) v ; ;

Let 35 be the second solution. By Abel’s Theorem, choosing ¢ = 1, we have

W(y1,y2) = exp {— /(—1 — %)dt} = exp{t +2Int} = t?".

Let yo = vy, the W (y1,y2) = v'y? = t*v’. Then we must have

20 = %€, v =é, v=e¢, Yo = te'.

(A cheap trick to double check your solution ys would be: plug it back into
the equation and see if it satisfies it.) The general\sotution is

y(t) = crye + coyp = 1t + col
We observe here that Method 3 is very

Example 5. Given the equation
Y1 = t(1/4)e2ﬂ, find ys.

Answer. We will always . We see that p = 0. By Abel’s
Theorem, setting ¢ = 1, we

Xp(/ 0dt) = 1.

Seek 1y, = vy;. Then, W o) = Y2 = t2eVhy . So we must have

tzeViy =1, = o =tze ™V = ¢= /t_%e_‘lﬂdt.

Let u = —4v/t, so du = —2t_%dt, we have

o 1u . 1u_ 1—4\/2
v—/ 26 du = 26— 26 .

So drop the constant —%, we get
Yo = VY1 = e WVia eVl = piem2VE
The general solution is

y(t) = c1ys + coyp = t%(0162ﬂ + cpe™2Vh.
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3.6: Non-homogeneous equations; method of
undetermined coefficients

Want to solve the non-homogeneous equation

y' +p)y + qt)y = g(t), (NV)

Steps:

1. First solve the homogeneous equation

¥ +p)y +q(t)y =0, (H)

i.e., find yy, yo, linearly independent of each d form the general
solution

Y = 1Yy + C2Y2.

. Find a particular/specific solution UC (method of un-

determined coefficients);
. The general solution for (N) is
Yy +Y601?/1 + cyp + Y.

Find ¢y, ¢y by i nditions, if given.

Key step: step 2.

Why y =yy + Y7
A quick proof: If yy solves (H), then

Y+ )y + a(t)ys =0, (A)

and since Y solves (N), we have

Y'+p()Y" +q(t)Y = g(1), (B)

Adding up (A) and (B), and write y = yg+Y, we get y"+p(t)y'+q(t)y = g(t).

Main focus: constant coefficient case, i.e.,

ay” + by +cy = g(1).
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Example 1. Find the general solution for y” — 3y’ + 4y = 3e?.
Answer. Step 1: Find yg.

P —3r—4=(r+1)(r—-4)=0, = r=-1 =4,

SO
—t 4t
Yg = c1€ -+ coe.

Step 2: Find Y. We guess/seek solution of the same form as the source term
Y = Ae?, and will determine the coefficient A.

Y =24e*, YY" =4Ae*.

Plug these into the equation:

1
4Ae* — 3. 24e% —4Ae* = 3e¥, = —6A = A= -5
SoY = —1e*. o
Step 3. The general solution to t -homo ous solution is
g 1o
y(t) Y = i8N coe™ — 3¢

Observation: The p
term g(t).

Y take the same form as the source

But this is not always tru

Example 2. Find general solution for 3" — 3y’ + 4y = 2e™".

Answer. The homogeneous solution is the same as Example 1: yg = cie '+

coe*t. For the particular solution Y, let’s first try the same form as g, i.e.,

Y = Ae7t. SoY' = —Ae ) Y” = Ae~!. Plug them back in to the equation,
we get

LHS = Ae™" — 3(—Ae™") —4A4e™" =0 # 2¢~“ = RHS.

So it doesn’t work. Why?

We see r; = —1 and y; = e, which means our guess Y = Ae~! is a solution
to the homogeneous equation. It will never work.

t
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Second try: Y = Ate™t. So
Y =Ae ™t — Ate™", V' = —Ae Tt — Ae7' 4 Ate™t = —24e7" + Ate™.
Plug them in the equation
(—2Ae™" + Ate™") — 3(Ae™" — Ate™") — 4Ate™" = —5Ae =27,

we get

2
—514:2, = A:—g,

so we have Y = —%te‘t.

Summary 1. If g(t) = ae®, then the form of{tlie~particular solution Y’
depends on 71,79 (the roots of the characteristic a@n

‘ case ‘ for&}\gf the pa\"c('\‘cular solution Y ‘

Vv
r # o and 7y # « G\\VQ Aet
\“N

rL=Qorry =q, but(v\\sé To Y = Ate*

ry = \\\0 Y = At?et
%
Example 3. Find the general solution for

y' — 3y — 4y =3t> +2.

Answer. The yy is the same yg = cie™t + coe.

Note that g(¢) is a polynomial of degree 2. We will try to guess/seek a
particular solution of the same form:

Y = At* + Bt + C, Y' = 2At + B, Y =2A
Plug back into the equation

2A—3(2At4b)—4(At*+ Bt+C) = —4At?— (6 A+4B)t+(2A—3B—4C) = 3t*+2.
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Compare the coefficient, we get three equations for the three coefficients
A B,C:

—4A =3 — A:—3

4
9
—(6A+4B)=0, - B= 3
1 55
2A-3B-4C=2, - C=-(2A-3B—-2)=——
4 32
So we get
3 9 55
Y(t)= -1+t — —.
O==305 "5
But sometimes this guess won’t work.
Example 4. Find the particular solutio — @/ = 3t? + 2.

Answer. We see that the for e previous example Y =
At? + Bt + C won’t work because ill not have the term ¢2.

New try: multiply by a ¢. e guess t(At?+ Bt+C) = At*+ Bt*+Ct.
Then

Plug them into the eq

(6At+2B) —3(3At* +2Bt+¢) = —9At*+ (6A—6B)t+ (2B —3C) = 3t +2.

Compare the coefficient, we get three equations for the three coefficients
A B, C:

—9A =3 — A:—%
1
(6A-65)=0, - B=A=—

2B -3C =2, — C:%(zB_z):_g

SoY =t(—3t* — 3t —3).

52



Summary 2. If g(¢) is a polynomial of degree n, i.e.,
g(t) = apt" + -+ + it + g
the particular solution for
ay” + by’ +cy =g(t)

(where a # 0) depends on b, ¢:

‘ case ‘ form of the particular solution Y ‘

c=0butb£0| Y =tP,(t) = t(At" + -+ Ajt + Ap)
c=0and b=0|Y =t?P,(t) = > (A t" \\ 34t + Ap)

Example 5. Find a particular solution for

y" — 34 ~edy =\Sin k.

Answer. Since g(t) = sin {\we will trynthe same form. Note that (sint) =
cost, so we must have the cost termesas well. So the form of the particular
solution is

Y~=\Asint + Bcost.

Then
Y' = Acost — Bsint, Y" = —Asint — Bcost.

Plug back into the equation, we get

(—Asint — Bceost) —3(Acost — Bsint) —4(Asint + bcost)
= (—bA+3B)sint + (—3A —5B)cost = sint.

So we must have
—-5A+3B=1, —-3A-5B=0, - A=— B=—.

So we get



But this guess won’t work if the form is a solution to the homogeneous
equation.

Example 6. Find a general solution for y” + y = sint.

Answer. Let’s first find yy. We have 2 +1 = 0, so r15 = =i, and
Yy = €1 ¢co8t + cosint.

For the particular solution Y: We see that the form Y = Asint + Bcost
won’t work because it solves the homogeneous equation.

Our new guess: multiply it by ¢, so
Y (t) = t(Asint + Bcost).

Then
Y’ = (Asint + Bcost) + t(Acost ;

Y" = (—2B — At)sint 4(2A — Bt) dost.

Plug into the equation
1
Y"+Y = —2Bsint + 2A cos = A=0, B:_§

So
——tcost.
2

The general solution is

1
y(t) =yy +Y =cycost+ casint — itcost.

Summary 3. If g(t) = asinat + bcos at, the form of the particular solution
depends on the roots r, rs.

‘ case ‘ form of the particular solution Y ‘
T2 # tai Y = Asinat + Bcosat

T2 = toi Y = t(Asinat + B cos at)

Next we study a couple of more complicated forms of g.
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Example 7. Find a particular solution for

y" — 3y — 4y = te'.

Answer. We see that g = Pi(t)e™, where P; is a polynomial of degree 1.
Also we see 11 = —1,1ry = 4, s0 1 # a and ry # a. For a particular solution
we will try the same form as g, i.e., Y = (At + B)e'. So

Y' = Ae' + (At + b)e' = (A + b)e' + Ate,

Y"=...= (24 + B)e" + Ate.
Plug them into the equation,

[(2A+ B)e'+ Ate'|—3[(A+b)e' + Ate']| —4( At+ B)e* —A—6B)e! = te'.

We must have —6At — A — 6B =1, i.e.,

1 1
— — — — — A = — _ Y = (—— —_ t.
6A=1, —A-6B=0, = G O = ( 6t+36)e
However, if the form of g is i e homogeneous equation, it won’t
work for a particular soluti e mt&t ultiply it by ¢ in that case.
Example 8. Find a ion of
' =3y — 4y =te "
Answer. Since a = —1 = rq, so the form we used in Example 7 won’t work
here. Try
Y =t(At + B)e ' = (At* + Bt)e .
Then
Y'=...=[-A + (2A — B)t + Ble™,
Y =... = [At? + (B — 4A)t + 2A — 2B]e™".

Plug into the equation

[At? + (B — 4A)t +2A — 2Ble™" — 3[—At* + (2A — B)t + Ble™" — 4(At* + Bt)e™
= [-10At+2A—5BJe™" = te.
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So we must have —10At + 2A — 5B = t, which means

1 1
~10A=1, 24-5B=0, > A=-g. B=-5.

Then

Summary 4. If g(t) = P,(t)e™ where P,(t) = a,t" + -+ + oyt + ap is a
polynomial of degree n, then the form of a particular solution depends on
the roots ry, rs.

case ‘ form of the garticular solution Y

r1#aand ry # a Y = Pn(t)e“t = (ANX"A -+ At + Ag)e™

ri=aorry=abut ry £y | Y =tP,(t)eSt( A + -+ Ayt + Ag)e™

rn=ry=a Y = 2B )e™= 2 (Apt" 4 - - 4 Ayt + Ag)e

Other cases of g are treated\in & similar way: Check if the form of g is a
solution to the homogeneeiis~équation. If not, then use it as the form of a
particular solution. If yes, theirmultiply it by ¢ or 2.

We summarize a few cases bélow.

Summary 5. If g(t) = e*(a cos St 4+ bsin 5t), and r, ro are the roots of the
characteristic equation. Then
‘ case ‘ form of the particular solution Y ‘

re#atif Y = e*(Acos St + Bsin (t)
ro=axif | Y =t-e*(Acosft+ Bsinft)

Summary 6. If g(t) = P,(t)e*(acos St + bsin 5t) where P,(t) is a poly-
nomial of degree n, and rq, 7, are the roots of the characteristic equation.
Then
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‘ case ‘ form of the particular solution Y ‘
raF#atif | Y =e[(At"+ -+ Agy)cos St + (But" + -+ + By) sin 3]
ro=a=xif | Y =t -e[(At" + -+ Ag) cos Bt + (B,t" + - - - + By) sin ft]

If the source g(t) has several terms, we treat each separately and add up
later. Let g(t) = g1(t) + g2(t) + - - - gn(t), then, find a particular solution Y;
for each g;(t) term as if it were the only term in g, then Y = Y1+ Yo+ --Y,,.
This claim follows from the principle of superposition.

In the examples below, we want to write the form of a particular solution.

Example 9. " — 3y — 4y = sin 4t + 2t + V>
Y

Answer. Since r; = —1,ry = 2, we treat each term\in/g’Separately and the
add up:
Y (t) = Asindt + B cos 4tCfe™ De® H\(EBt + F).

Example 10. y" + 16y = sin 26 Feost\4 cBs 4t + 4.

Answer. The char equatiomis r? 4+ 16\=.0, with roots r1 o = £4i, and
Y \=s 6 sin 4 ¢y cos 4t.

We also note that the ternis~sitn\dt and —4 cos 4t are of the same type, and
we must multiply it by ¢. o

Y = t(Asindt + Bcos4t) + (Ccost + Dsint) + E.

Example 11. " — 2y + 2y = el cost + 8elsin 2t + te ! + 4et + 2 — 3.
Yy Y

Answer. The char equation is 72 — 2r 4+ 2 = 0 with roots r12 = 1+4. Then,
for the term e’ cost we must multiply by ¢.

Y = te' (A, cos t+ Ay sint)+e' (B cos 2t-+ By sin 2t)4-(C1t+Cp)e '+ De '+ ( Fyt* + Fit+Fy).
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3.7: Mechanical vibrations

In this chapter we study some applications of the IVP
ay’ +by' +ey=g@1),  y(0) =y, y'(0)=7%.
The spring-mass system: See figure below.

(A) (B) (©)

I+L

Figure (A): a spring in rest) with length
Figure (B): we put a
call length L the elo

Figure (C): The spring- s System is set in motion by stretch/squueze it
extra, with initial velocity, v with external force.

Force diagram at equilibrium position: mg = F's.

Fs

mg

Hooke’s law: Spring force Fy; = —kL, where L =elongation and k =spring
constant.
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So: we have mg = kL which give

mg
k=—
L
which gives a way to obtain k by experiment: hang a mass m and measure
the elongation L.

Model the motion: Let u(t) be the displacement /position of the mass at time
t, assuming the origin u = 0 at the equilibrium position, and downward the
positive direction.

Total elongation: L + u

Total spring force: Fy = —k(L + u)

Other forces:

* damping/resistent force: Fy(t) = —yv = —yu/(
constant, and v is the velocity

* External force applied on the mass: F(t

Total force on the mass: > f =mg+

e 7 is the damping

Newton’s law of motion ma = >_ f

ma:mu":Zf:mg+Fs+Fd+ v =mg—k(L+u)—~u' +F.

e te@ls, we get

+5u' 4+ ku=F

Since mg = kL, by rearran

where m ia the mass, v is\the damping constant, &k is the spring constant,

and F' is the external force.

Next we study several cases.

Case 1: Undamped free vibration (simple harmonic motion). We assume no
damping (v = 0) and no external force (F' = 0). So the equation becomes

mu” + ku = 0.

Solve it

k [k [k
mrl+k=0, r?=——, ri2 = 4/ —t = *wpt, where wy =/ —.
m m m
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General solution
u(t) = c1 coswot + o sin wyt.

Four terms of this motion, frequency, period, amplitude and phase, defined
below:

[ k
Frequency: wy =4/ —
m

2
Period: T = il
Wo

Amplitude and phase: We need to work on this a bit. We can write

u(t) =1/ +c3 T coswol + ——2—— sin wyt

= —— ot + ———= ot | -
b VAE+ A N e

Now, define §, such that tand = ¢y /¢y, then

Co 1
casN =

VE+ G V& A

sind =

so we have

u(t) =/ + c&(cos d - cefwpt + sin MSin wot) = 4/ 3 + 3 cos(wot — ).

c
So amplitude is R =K/t + ¢ ‘and phase is § = arctan =y

&1

A few words on units:

force (f) | weight (mg) | length (u) | mass (m) | gravity (g)
1b 1b ft Ib - sec?/ft | 32 ft/sec?
newton newton m kg 9.8 m/sec?

Example 1. A mass weighing 10 1b stretches a spring 2 in. If the mass is
displaced an additional 2 in, and is then set in motion with initial upward
velocity of 1 ft/sec, determine the position, frequency, period, amplitude and
phase of the motion.

Answer. We see this is free harmonic oscillation. We have
10 10 5
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And the elongation is L = 2in = #ft. So k = mg/L = 60. Let u(t) be the
position from equilibrium, we get the equation

5!
mau” + ku = 0, Eu” +60u = 0,

therefore
u” +192u =0, uw(0) ==, «/(0)=—1.

So the frequency is wg = v/192, and the general solution is
u(t) = ¢1 cos wyt + o sin wyt

By the 1Cs:

u(0) =c = u'(0) = woeg = —1,

1
6’
(Note that ¢; = u(0) and co = v/ (0)/wo.
time ¢

and

Co
0 = arctan — = arctan ———— = — arctan T

C1 V192

Case II: Damped free vibration. We assume that v # 0(> 0) and F' = 0.

mu” +~yu' + ku =0

then

Y E /R —4km
B 2m ’

We see the type of root depends on the sign of 42 — 4km.

mr? + yr+ k=0, 12
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o If 42 — 4km > 0, (i.e., v > V4km) we have two real roots, and the
general solution is u = cje™! + cpe™t, with 1y < 0,75 < 0.

Due to the large damping force, there will be no vibration in the motion.
The mass will simply return to the equilibrium position exponentially.
This kind of motion is called overdamped.

o Ify2—4km = 0, (i.e., v = V4km) we have double roots 71 = ry = r < 0.
So u = (¢; + cat)e™.

Depending on the sign of ¢, ¢y (which is determined by the ICs), the
mass may cross the equilibrium point maximum once. This kind of mo-
tion is called critically damped, and this value of ~ is called critical
damping.

o If 42 —dkm < 0, (i.e., v < V4km) we have ¢ompleX+qots

Vdkm — ~?

T2 = == ,UZ, A=
2m

A\ 5=
Ah.

So the position is
u = e (e edsut ¥ ¢y sin put).

This motion is damped, oscillation. We can write

u(t) = e MR os{by-0), R=1\/c+c3, §=arctan 2.

&1

Here the term e MR is the amplitude, and p is called the quasi fre-
quency, and the quasi period is 27” The graph of the solution looks like
the one for complex roots with negative real part.

Summary: For all cases, since the real part of the roots are always negative,
u will go to zero as t grow. This means, if there is damping, no matter how
big or small, the motion will eventually come to a rest.

Example 2. A mass of 9.8 kg is hanging on a spring with £ = 1. The mass
is in a medium that exerts a viscous resistance of 6 1b when the mass has a
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velocity of 48 ft/s. The mass is then further stretched for another 2ft, then
released from rest. Find the position u(t) of the mass.

Answer. We have v = 4% = %. So the equation for u is

1
mu” +yu' +ku=0, u + éu' +u=0, u(0)=2, «(0)=0.

Solve it

1 1 /255 255
2 .
+Ir4+1=0 = X gy =

u(t) = 6_%':(01 cos wot + ¢ sin wot).

By ICs, we have u(0) = ¢; = 2, and
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3.9: Forced vibrations

In this chapter we assume the external force is F'(t) = Fycoswt. (The case
where F(t) = Fysinwt is totally similar.)

Case 1: With damping.
mu” + yu' + ku = Fy cos wt.
Solution consists of two parts:
u=ug+ U,

ug: the solution of the homogeneous equation,
U: a particular solution.

Oast — o
¢ solution is called the

From discussion is the previous chapter, we kno
for systems with damping. Therefore, this part of t
transient solution.

.@herefore it is called the
We see it is a periodic

The appearance of U is due to the_force
forced response. The form is U
oscillation for all time .

As time t — 0o, we have u alled the steady state.

Case 2: Without d

u 4 ku = Fycoswt

[k
wo =14/ —, uUg = ¢ coswyt + cosinwopt
m

The form of the particular solution depends on the value of w. We have two
cases.

Case 2A: if w # wy. The particular solution should be
U = Acoswt + Bcoswt

But there is no «’ term, so we only need U = A coswt. And U” = —w?A cos wt.
Plug in the equation

m(—w?Acoswt) + kA coswt = F, coswt,
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(k—muw?)A=F, A=

Fo

Fy

General solution

k — mw?

m(wi — w?)’

u(t) = c1 coswot + o sinwgt + A cos wt

Assume ICs: u(0) =0, «/(0) = 0. Find ¢4, co.

u(0)=0: ¢ +A=0,

Clz—A

wW(0)=0: 04+weea+0=0, =0

Solution

u(t) = —A cos wyt+A coswt = A(cos wt—cos wot)

(We used the trig identity: cosa — cosb

We see the first term 2A sin %t can b
and the second term sin %t is i

One particular situation: if wy # w

The plot looks like (we cho@z 9,
) &

A\
15F .\\} B
Al ]
0.5 i
0
o5t ]
Ll ]
sl ]
-2 L L L L
0 5 10 15 20
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This is called a beat. (One observes it by hitting two nearby keys on a piano,
for example.)

Case 2B: If w = wqy. The particular solution is
U = At coswgt + Bt sin wqt

A typical plot looks like:

-5 1 N 1 1 1 !
0 05 IN\NIx1) 25 3 35

This is called resonance. 1 frequency of the source term w equals to the
frequency of the system wy, then, small source term could make the solution
grow very large!

~
>
3]
(&)

Summary:

e With damping: Transient solution plus the forced response term,

e Without damping:
if w = wy: resonance.
if w # wy but w ~ wy: beat.
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Chapter 6. The Laplace Transform

—used to handle piecewise continuous or impulsive force.

6.1: Definition of the Laplace transform
Topics:

e Definition of Laplace transform,

e Compute Laplace transform by definition, including piecewise contin-
uous functions.

Definition: Given a function f(t), t > 0, its Laplate tradsform F(s) =
L{f(t)} is defined as

A

F(s)=L{f(t)} = /OOO e f (1) dh=>Hm e S f(t) dt

A0 0

We say the transform converges if theNimit exists, and diverges if not.

Next we will give example§ ‘o computiirg the Laplace transform of given
functions by definition.

Example 1. f(t) =1 for ¢ >9.

Answer.
A 1 A
o o —st _ N _ st — _—[,—sA ——
F(s)—ﬁ{f(t)}—Ah_rgo/O e dt—Ah_{rOlo e ) Algrolo s[e 1] > (s >0)
Example 2. f(t) = €.
Answer.
! i L

_ . —st _at . —(s—a)t . _ —(s—a)t

F(s) = E{f(t)}_jl—{%o/o e e dt_AlgEo i e dt—f}grgo - )
1 1
= 1 _ —(s—a)A 1) = >
Al—{%o s—a(e ) s—a’ (5> a)

67



Example 3. f(t) =", for n > 1 integer.

Answer.

A et
F(s) = lim e "dt = lim < t"

A—o00 0 A—o0 —S

A A n—1_—st
t
_ / mte
0 0 -5
n A n
= 04— lim e S ldt = —L{t" '}
S

S A—oo 0

So we get a recursive relation
n n n—1
L{t"}y = —L{t"}, i,
s

which means

n —

cimy = "legnry, gty = TOZZ

S

By induction, we get

n N n(n— (n—1)(n—2) N
iy = Sopry = S D gy
— —2 ' !
— . :gwsk&n )...S 1} %EZ%’ (s > 0)
Example 4. Find the ansform of sin at and cos at.

Answer. Method 1. C
twice. (lots of work...)

Method 2. Use the Euler’s formula

ute by definition, with integration-by-parts,

i

e’ = cosat + isin at, = L{e""} = L{cosat} +iL{sinat}.
By Example 2 we have

c{ea) — 1 I(stia)  s+ia s . a

s—ia (s —ia)(s+ia) 2+ a> 52—|—a2+252+a2'

Comparing the real and imaginary parts, we get

S

L{cosat} = T L{sinat} = %

vl (s >0).
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Remark: Now we will use fooo instead of lim4_ fOA, without causing confu-
sion.

For piecewise continuous functions, Laplace transform can be computed by
integrating each integral and add up at the end.

Example 5. Find the Laplace transform of

1, 0<t<2
f(t)_{t—2, 2<t.

We do this by definition:

F(s) = /Oooe—stf(t)dt = /026_8tdt+/200(t
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6.2: Solution of initial value problems
Topics:
e Properties of Laplace transform, with proofs and examples

e Inverse Laplace transform, with examples, review of partial fraction,

e Solution of initial value problems, with examples covering various cases.

Properties of Laplace transform:
1. Linearity: £{c1f(t) + cag(t)} = 1 L{F(£)} ¥eoldg(t)}-
2. First derivative: £{f'(t)} = sC{f(t)} — F(0))
3. Second derivative: £{f"(t)} = s2LLFE)} — sf10) — f/(0).
4. Higher order derivative:
L{fM (1)} = s"LLf (D)} =" MOV (0)—- - -—sf 2 (0)— £ 1(0).

5. L{—=tf(t)} = F'(s) where F(s) ==L{f(t)}. This also implies L{tf(t)} =

—F'(s).
6. L{e"f(t)} = F(s"a) where F(s) = L{f(t)}. This implies e™ f(t) =
LYF(s—a)}.
Remarks:

e Note property 2 and 3 are useful in differential equations. It shows
that each derivative in ¢ caused a multiplication of s in the Laplace
transform.

e Property 5 is the counter part for Property 2. It shows that each
derivative in s causes a multiplication of —t¢ in the inverse Laplace
transform.

e Property 6 is also known as the Shift Theorem. A counter part of it
will come later in chapter 6.3.
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Proof:

1. This follows by definition.

2. By definition
el = [ e rod=e o] - [Tt e = —rorseiso).
3. This one follows from Property 2. Set f to be f/ we get
LU0} = SLU 0} -1'(0) = s(LU (W} F(0)~F(0) = SL{F ()} -1 (0)~0)

4. This follows by induction, using property 2

5. The proof follows from the definition:

By using these properties; could find more easily Laplace transforms of
many other functions.

Example 1.
n 7’L' atyn n'
From L{t"} = sy we get L{e"t"} = (s —a)nt1
Example 2.
. b at _:
From L{sinbt} = TR we get L{e"sinbt} = CErEEE
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Example 3.

S
S2+b2’

s—a

From L{cosbt} = m'

we get L{e" cosbt} =

Example 4.

3! 1

L4845t =2} = L{F} +5L{t) —2L{1} = — + % -

S

4

Example 5.

L{e*(t*+ 5t —2)} =

Example 6.

L{(t* +4)e* — e tcost) =

because

2 4
2 —— _
Lt +4}_83+S, =

Next are a few exam'

Example 7.

1

!/
Given £{€at} — -t we get E{teat} — _ (S i a) = (8 — a>2

Example 8.

. b ! —2bs
L{tSIHbt} = — (82 —|—b2) = (52 _|_b2>2'

Example 9.
/ 2 2
L{tcosbt} = — (m) == (2 +62)%
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Inverse Laplace transform. Definition:

LYF()} = (), it Fls)= L{fO)}.

Technique: find the way back.

Some simple examples:

Example 10.
£ {5214} -£ {g ' ﬁ} B gﬁ_l {s2i22} N gSin%‘

Example 11.

A R

Example 12.
RESES

Example 13.

sty s+1 _ a1 ) 3/4 1/4 _ 3 Ly
£ {52—4}_£ {(5—2)(s+2)}_£ {s—2+s—|—2 AR

Here we used partial fraction to find out:

1
1 {32 +4} = cos2t§ sin 2t.

s+1 A n B
(s—2)(s+2) s—2 s+2

A=3/4, B=1/4.
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Solutions of initial value problems.

We will go through one example first.
Example 14. (Two distinct real roots.) Solve the initial value problem by
Laplace transform,
y' =3y —10y =2,  y(0)=1,9'(0) =2
Answer. Step 1. Take Laplace transform on both sides: Let L{y(t)} =
Y(s), and then
L{y()} = sY(5)—y(0) =sY =1,  L{y"()} = s’Y (5)=sy(0)—y'(0) = s*Y —s—-2.
Note the initial conditions are the first thing to go.in!

L4y ()} =3L{y' (t)}—10L{y(t)} = £{2}, = 2-3(sY—-1)—-10Y = 2

S

Now we get an algebraic equation for Y
Step 2: Solve it for Y(s): O

2 —s5+2
s(s —5)(s+2)

2
(s*=35—10)Y (s) = ~+s+2-3 = = Y(s) =
s

Step 3: Take inverse Laplac

sfor@to get y(t) = L7{Y (s)}. The main
technique here is pa fraction:

s2—5+2
s(s —5)(s+2)

Compare the numerators:

s —s5+2=A(s—5)(s+2) + Bs(s+2) + Cs(s — 5).

C A(s —=5)(s+2)+ Bs(s+2) + Cs(s — )

5+s+2_ s(s —5)(s+2)

Y(s) =

The previous equation holds for all values of s.
Set s = 0: we get —104A =2,s0 A = —é.

Set s = 5: we get 3bB =22,s0 B = %
Set s = —2: we get 14C = 8,50 C' = =.

Now, Y (s) is written into sum of terms which we can find the inverse trans-

form:
122, 4

1 1 1
— 17z L e e G = —— — —e
y(t) = AL {8}+B£ {5_5}+C£ {8+2 Fhgge toe
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Structure of solutions:

e Take Laplace transform on both sides. You will get an algebraic equa-
tion for Y.

e Solve this equation to get Y (s).

e Take inverse transform to get y(t) = L7{Y}.

Example 15. (Distinct real roots, but one matches the source term.) Solve
the initial value problem by Laplace transform,

y'—y —2y=¢* = y(0)=0,

LU =Ly -L{2y} = L{"}, = Y (

Solve it for Y:

(s*—5—2)Y (s) =

Use partial fraction:

S—
5—22s+1) s+1 s—2 =27

Compare the numerators:
s—1=A(s =22+ B(s+1)(s—2)+C(s+1)

Set s = —1, we get A = —%.
Sets:2,wegetC:%.
Set s = 0 (any convenient values of s can be used in this step), we get B = %.

So
2 1 2 1 1 1

9511 9s-2 3(-2p2

Y(s) =
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and 9 5 )

-1 —t 2t 2t

y(t) =L {Y} = 5¢ +96 —|—3t6 :

Compare this to the method of undetermined coefficient: general solution
of the equation should be y = yg + Y, where yy is the general solution to
the homogeneous equation and Y is a particular solution. The characteristic
equation is 72 —r —2 = (r+1)(r —2) =0, so 1 = —1,7, = 2, and
yg = cie”t + cpe?t. Since 2 is a root, so the form of the particular solution
is Y = Ate?. This discussion concludes that the solution should be of the
form

y=cre !t + cpe® 4+ Ate*

for some constants cq, co, A. This fits well with our result.

Example 16. (Complex roots.) Solve

y' =2 +2y=¢"" y

7‘172:1:&2',

Y = Ae™?,

y=1yg+Y =cie' cost + cpe’sint + Ae .
The Laplace transform would be

s—1 1 1 c(s—1)+cy A
Co +A = .
(s—1)2+1 (s—1)2+1 s+1 (s—12+1  s+1

This gives us some idea on which terms to look for in partial fraction.

Now let’s use the Laplace transform:
Y(s)=L{y}, L{y'}=sY —y(0)=sY,

L{y"} = Y — sy(0) — y(0) = s?Y — 1.
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1 1 2
$2Y —1-2sY +2Y = Lo (P24 )V (s) = —— 1= 2T
s+ 1 s+ 1 s+ 1

s5+2 s+2 A B(s—1)+C

Yis) = +1)(—25+2) (s+1((s—12+1) s+1 (s—1)2+1

Compare the numerators:
s+2=A((s =1+ 1)+ (B(s—1)+C)(s+1).

Set s = —1: 5A:1,A:%.
Compare coefficients of s®-term: A+ B =0, B=—-A = —%.

Set any value of s, say s = 0: 2:2A—B+C,C:2—2A—|—B:%.

We see this fits our prediction.

Example 17. (Pure imagi

y'+ty=c

Answer. Again, let’s t the terms in the solution:

r?+1=0, T2 = £, Yyg = c1cost + coysint, Y = Acos2t

S
y=yng+Y =cicost+cosint + Acos2t,

and the Laplace transform would be

S 1 S

Y(s)=c ——— A——.
(5) ag 1T %e 1 T2

Now, let’s take Laplace transform on both sides:

S

2
Y -2s—14+Y =L 2t} =
s s—1+ {cos 2t} 21
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s sl 253 + 52 +9s+4
S =
s2+4 s2+4
23+ s24+9s+4 As+B Cs+D
Y(s) = = + :
(s24+4)(s2+1) 241 s2+4

Comparing numerators, we get

(s> +1)Y(s) =

25° + 5%+ 9s+4 = (As+ B)(s* +4) + (Cs + D)(s* + 1).

One may expand the right-hand side and compare terms to find A, B,C, D,
but that takes more work.

Let’s try by setting s into complex numbers.

Set s = 4, and remember the facts > = —1 and % =< —i, we have

—2 — 1+ 9i+4 = (Ai + B)(—

which gives
3+ 7 =3B+ 3Ai

Set now s = 2i:

then

So

and

A very brief review on partial fraction, targeted towards inverse
Laplace transform.

Goal: rewrite a fractional form ]Ij;((ss)) (where P, is a polynomial of degree n)
into sum of “simpler” terms. We assume n < m.
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The type of terms appeared in the partial fraction is solely determined by
the denominator P,,(s). First, fact out P,,(s), write it into product of terms
of (i) s —a, (i) s* + a?, (iii) (s,)? + b*%. The following table gives the terms
in the partial fraction and their corresponding inverse Laplace transform.

term in Py(s) |

from where?

‘ term in partial fraction

‘ inverse L.T.

real root, or

A
s—a g(t) = e Ae
s—a
double roots,
A B
(s —a)? orr=aand g(t) = e® . - G ap Ae™ + Bte™
double roots,
A B C C
_a)3 d t) = at A at Bt at —t2 at
(s —a) and g(t) =e s—a+(s—a)2 (s a) e + Bte +2 e
imaginary roots or
AsN- B
s% 4+ u? g(t) = cos ut or sin ut ﬁ Acos ut + Bsin ut
complex roots, or
A(s— N+ B
(s — N2+ p? | g(t) = eMcos ut(or sinyit) (;S_)\ﬁ eM(Acos put + Bsin pt)
In summary, this table can“he written
P,(s)
(s —a)(s = 0)*(s — c)*((s = A)* + 1)
_ A Bl i Bg i 1 i Cg i Cg D1 (8 - )\) + D2
s—a s—b (s=02? s—c (s—c¢)? (s—c) (s = A)2 4 p?

79



6.3: Step functions
Topics:

e Definition and basic application of unit step (Heaviside) function,

e Laplace transform of step functions and functions involving step func-
tions (piecewise continuous functions),

e Inverse transform involving step functions.

We use steps functions to form piecewise continuous functions.

Unit step function(Heaviside function):

For a given function f(t), if it is multiplied with u.(t), then

0, 0<t<ec,

uct f(t) = { flt), <t

We say u,. picks up the interval [c, 00).

Example 1. Consider

1, 0<t<c,
1—uc(t):{ 0, c<t.

A plot of this is given below
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1 — u,

We see that this function picks up the interval [0, ¢).

Example 2. Rectangular pulse. The plot of the function looks like

Uqg — Up

N

can be expressed as

£) Su(t)

for 0 <a < b< oo. We see

and it picks up the in

Example 3. For the funct

g(t):{ fit), a<t<bd

0, otherwise

We can rewrite it in terms of the unit step function as

9(t) = £() - (ualt) = w(®)).

Example 4. For the function

sint, 0<t<1,
ft=1< e, 1 <t<b,
12 5 < t,
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we can rewrite it in terms of the unit step function as we did in Example 3,
treat each interval separately

ﬂ@:am-@dn—ma»+a-@ﬂo—%a»+ﬁ-%@.

Laplace transform of u.(t): by definition

00 o] —st |
L{u(t)} = / e~ u(t) dt = / et 1dt = & -
0 c -

Shift of a function: Given f(¢), t > 0, then

f(t—c) c<t,
0<t

g(t) =

is the shift of f by c units. See ﬁgure below.
f

0
0 \\\ ol ¢ \ K

Let F(s) = L{f(t)} be the Laplace transform of f(¢). Then, the Laplace
transform of ¢(t) is

L{g(t)} = L{u(t)- f(t—c)} = / f(t—c)dt = /OO et f(t—c)dt

Let y=t—c,sot=1y+c, and dt = dy, and we continue

L{g(t)} = / e W fy) dy = e /0 ) e~ f(y)dy = e"*F(s).

So we conclude

L{uc(t)f(t =)} = e L{f({)} = e F(s),
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which is equivalent to
LHe ®F(s)} = u(t)f(t —c).

Note now we are only considering the domain ¢ > 0. So ug(t) = 1 for all
t>0.

In following examples we will compute Laplace transform of piecewise con-
tinuous functions with the help of the unit step function.

Example 5. Given

sint,

ft) =9 .
sint + cos(t —

It can be rewritten in terms of the unit

f(t) =sint

(Or, if we write out each intervals

() = sint(1 —uz (t) (t) = sint + uz (t) - cos(t - g).

which gives the same an

And the Laplace transform of f is

F(s) = L{sint} + E{ug (t) - cos(t — %)} = - 1

Example 6. Given
t, 0<t<1,
f(t)_{ 1, 1<t
It can be rewritten in terms of the unit step function as

@) =t —w () +1-w(t) =t — (- Du(t).
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The Laplace transform is

LU0} = L0}~ L0~ Dur(0)} = 5 — 5.

Example 7. Given

0, 0<t<?2,
f(t)_{ t+3, 2<t.
We can rewrite it in terms of the unit step function as
ft) = (t+3)us(t) = (t — 24+ 5)ug(t) = (t — 2)ua(t) + Sus(t).

The Laplace transform is

Observe that
tr—1=(t-2+2)—-1 2 +4(t—2)+4—1=(t—2)> +4(t—2)+3,

we have
gt) =1+ ((t =2 +4(t — 2) + 3)ua(t) .

The Laplace transform is

L{g(t)} = % e <$2—3 L2 §) .

Example 9. Given

0, 0<t<3,
ft)=4q €, 3<t<4,
0, 4<t.



We can rewrite it in terms of the unit step function as
f(t) = e (us(t) — ug(t)) = ug(t)e'3e® — uy(t)e! et
The Laplace transform is

1 1 1
Llo} = e o — et ey = g [0V e

Inverse transform: We use two properties:
—cs 1 —cs
L{u.(t)} =e > and L{u.(t)f(t—c)}=e-L{f(t)}.
In the following examples we want to find f(t) =

Example 10.

Example 11. Given

e 3 1 A B
F _ _ ,—3s — ,—3s )
(s) P21s—12  ° (s+4)(s+3) ‘ (s+4+s—3>
By partial fraction, we find A = —% and B = % So

1
?Ug(t) [_6—4(t—3) + 63(15—3)}

F(t) = L7HP(s)} = ug(t) [Ae™CH) 4 BeHe—9] =
which can be written as a p/w continuous function

0, 0<t<3,
ft) = 1 1

B G = N R
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Example 12. Given

se”?® s+2-—2 _s| s+2-2 s+2—2

F :7:_87:
(s) s2t+4s+5 (s+2)2+1 ° (s+2)2+1+(s+2)2+1

So
ft) = LHE(s)} = uy(t) [V cos(t — 1) — 22 Vsin(t — 1)]
which can be written as a p/w continuous function
0, 0<t<1,

ft) =
e 27D [cos(t — 1) — 2sin(t — 1<t
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6.4: Differential equations with discontinuous
forcing functions

Topics:

e Solve initial value problems with discontinuous force, examples of var-
ious cases,

e Describe behavior of solutions, and make physical sense of them.

Next we study initial value problems with discontinuous force. We will start
with an example.

Example 1. (Damped system with force, complex raots) Solve the following
initial value problem

0, 0<¥t&l
=g a0 ={ 5 IS O -1 v -o.

Answer. Let L{y(t)} = YAs), so L{W = sY — 1 and L{y"} = s*Y — s.
Also we have £{g(t)} = L{uNBD} = €751 Then

P

1
P =k sV —14+Y =e 5=,
s
which gives
e’ n s+1
s(s2+s+1) s2+s+1
Now we need to find the inverse Laplace transform for Y(s). We have to do
partial fraction first. We have

1 A Bs+ C

s(s2+s+1) s+s2+s+1'

Y(s) =

Compare the numerators on both sides:

1=A(s*+s+1)+(Bs+C)-s
Set s =0, we get A =1.
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Compare s*term: 0 = A+ B,so B=—-A= —1.
Compare s-term: 0 =A+C,s0C=—-A=—1.

So
1 s+1 ) s+1

V(s=e (2172 4 _27°
(s)=e (s s2+s+1 s2+s+1

We work out some detail

s+1 s+l st + e
. _ -
s2ts+1 (sl (LB (s+ 124 ()2

-1 5+1 T

We conclude

SO

Answer: We see all the te with the exponential function will go to zero,
so y — 1 in the limit. We can view this system as the spring-mass system
with damping. Since g(¢) becomes constant 1 for large ¢, and the particular
solution (which is also the steady state) with 1 on the right hand side is 1,
which provides the limit for y.

Further observation:

e We see that the solution to the homogeneous equation is

i V3 V3

e 2" [c;co8s —1t + cgsin —t|
R 270

and these terms do appear in the solution.
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e Actually the solution consists of two part: the forced response and the
homogeneous solution.

e Furthermore, the g has a discontinuity at t = 1, and we see a jump in
the solution also for ¢t = 1, as in the term wu,(t).

Example 2. (Undamped system with force, pure imaginary roots) Solve the
following initial value problem

0, 0<t<m,
YV +dy=gt)=<¢ 1, 7w<t<2m, y(0)=1, %(0)=0.
0, 27 <ft,
Rewrite
g(t) = ux(t) —uoe(t),  L{g}=¢"
So

Solve it for Y:

s

Y(s) s?2+4
Work out partial fraction

1
C=0
s(s2+4)
So
1 1 1
e} =- — —cos2t.
£ {5(52 +4)} 1 1°”

Now we take inverse Laplace transform of Y
0 = unt) [+ - Leosa(t - m) ) (L - Leosa(t — 2m)) + cos2t
Yy = Uy 1 1% T Uy 1 1% T cos
1
= (ux(t) — u27r)1(1 — cos 2t) 4 cos 2t

(1 —cos2t), m™<t<2m,
cos 2t +

0, otherwise,

= homogeneous solution + forced response
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Example 3. In Example 2, let

0, 0<t<4,
g(t) =1 €', 4<5<2m,
0, 5<t.

Find Y (s).
Answer. Rewrite
g(t) = ¢ (uat) = us(t) = ua(t)e' et — us(t)e 7,

SO

1
_ _ 4 _—4s _ ,.5_—5s
G(s) =L{g(t)} =¢€"e o1 T

Take Laplace transform of the equation, we get

24 4)Y (s) = i
(s*+4)Y (s) = G(s)+s, T +4)+$2 T
Remark: We see that the first term will e@rced response, and the

Example 4. (Undamped syste g force, example 2 from the book p.
334)

0, 0<t<5,
y' +4y=g(t), y(0)=0,y(0)=0, gt)=< (t—5)/5 5<5<10,
1, 10 < t.

Let’s first work on ¢(t) and its Laplace transform

ot) = =2 ust) o) + wnlt) = Sus(®)t =)~ Sun(t)(¢ — 10),
G(s) = L{g} = %6_585_12 - ée‘msé

Let Y(s) = L{y}, then

(s*+4)Y (s) = G(s), Y(s) = = —¢ 7_16—105



Work out the partial fraction:

I _A B Cs+2D
Cos2(s2+4) s 82 s2+4

one gets A=0, B =
1 1 1 1 2 1 1
hMty=L' ———— V=Lt — -2 = % = 2t — —sin2t.
() =L {52(52+4)} £ {4 s2 8 s2+22} TR
Go back to y(t)

y(t) = LYY = Zus(h(t — 5) — guno(0)hlt ~ 10)

1 1 1 1 1
0, 0 <5,
— { 55(t—5)— &sin2(t—5 5&5 < 10,
T — 5(sin2(t —5) —si 10 <t

Note that for ¢ > 10, we h
R and phase 0.

The plots of g and y
nature of the solution:

ook. Physical meaning and qualitative

The source g(t) is known amp loading. During the interval 0 < t < 5,
g = 0 and initial conditions are all 0. So solution remains 0. For large time
t, g = 1. A particular solution is Y = i. Adding the homogeneous solution,
we should have y = i + ¢ 8in 2t + ¢5 cos 2t for ¢ large. We see this is actually
the case, the solution is an oscillation around the constant i for large t.
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Chapter 7. Systems of two linear differential
equations

7.1: Introduction to systems of differential equa-
tions

Given
ay’ +by +ey=g@1), y0)=a, y(0)=4
we can do a variable change: let
/ /,
ry =Y, Ty =21 =Y
then

Ty = Iy o) = o
{m’z = = 20— b — ) {x2<0> = 8

a

Observation: For any 2nd order etutation, wé caw rewrite it into a system of
2 first order equations.

Example 1. Given
y' + 5\ =\sint] y(0) =2, y'(0)=4

Rewrite it into a system of first order equations: let 1 = y and x5 = ¢ = 2,
then

Ty o= X9 LCs z1(0) = 2
ry = y"=—bry+ 10x; +sint B z2(0) = 4

We can do the same thing to any high order equations. For n-th order
differential equation:

y(n) = F<t7 Y, y/7 e 7y(n_1))

define the variable change:
T =y, Ta=y, o T=Y
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we get

(2 = Y =
v o= o =
<
x;z—l = y(n_l) =Tn
| 7, = y "W = F(t,zy, 20, , x)

with corresponding source terms.
Reversely, we can convert a 1st order system into a high order equation.
Example 2. Given
{ xy = 3ry — 2x9 { x1(
xh = 2ry — 2x9 x9(0

Eliminate xo: the first equation gives

N

2r9 = 3x1 — 27 —ry— —a].

with the initial conditions:

21(0) =3, 27(0) = 3x,(0) — 229(0) = 8.

This we know how to solve!

Definition of a solution: a set of functions z(t), z2(t), -, z,(t) that satisfy
the differential equations and the initial conditions.
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7.2: Review of matrices

A matrix of size m X n:

al,l al,n
A= 5 =(aij), 1<i<m,1<j<n

Qm,1 * Amn

We consider only square matrices, i.e., m = n, in particular for n = 2 and 3.

Basic operations: A, B are two square matrices of size n.
[ ] Addltlon A —+ B = (aij) —+ (b”) = (aij + bi])

e Scalar multiple: 0A = (« - a;)

e Transpose: AT switch the a;; with aj;. (A7)

e Product: For A- B = C, it means
of A) and (jth column of B)

Example 1.
Tr1 — To + 3.T3 = 4 1 -1 3 T
2z +5x3 = 0  can be expressed as: 2 0 5 A oz | =
ry—x3 = T 0 1 -1 T3
Example 2.

{8 Zapmrimred » ()= )G
Some properties:

e Identity I: I = diag(1,1,---,1), Al =TA = A.
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e Determinant det(A):

b
det v = avz + bwx + cuy — rve — ywa — zub.
Y

8 2 2
N £ o

o Inverse inv(A) = A~ ATA=AA = 1.
e The following statements are all equivalent:

1) A is invertible;

2) Ais non—smgular

(1)
(2)
— (3) det(A) #
(4)
(5)
(6)

— (4) row vectors in A are linea
5
6) All eigenvalues of A

dependant;

d%endent

column vectors in
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7.3: Eigenvalues and eigenvectors

Eigenvalues and eigenvectors of A (Ais 2 x 2 or 3 x 3.)

A: scalar value, v column vector, v % 0.
If A7 = M0, then (A, ) is the (eigenvalue, eigenvector) of A.

They are also called an eigen-pair of A.

Remark: If ¢ is an eigenvector, then at for any « # 0 is also an eigenvector,

because
A(at) = aA¥ = a v = \(ad).

How to find (A, v):

AT— M =0, (A—N)T=0, A) = 0.

We see that det(A — A\I) is a polynomial of degree 2 ) in A, and it is also
called the characteristic polynomial of e need to\find its roots.

Example 1: Find the eigenvalue

Answer. Let’s first

1—

det(A—AI) = det ( 4

Now, let’s find the eigenvector @) for \; = —1: let @y = (a,b)”

o+ (0L () (8)
0
0

SO

2a+b=0, choose a =1, then we have b = -2, = 171:( 1 )
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Finally, we will compute the eigenvector 7, = (¢, d)T for Ay = 3:

awmsn = (151) (2)-(2)
- ()

2c—d =0, choosec = 1, then we have d = 2, = Uy = ( ! )

SO

Example 2. Eigenvalues can be complex numbe

(13

Let’s first find the eigenvalues.

&

2—-X -9

det(A—)\I)zdet( )_ X436 =0, = Ay =246

We see that Ay = A
eigenvectors, i.e., U;
compute ¥ = (vl v?)T:

L —i6 =9 vt
aimo () ()

2
—6ivt — 9% =0, choose v! =1, so v? = —gz',

5 1 . = 1
1= _%Z ) 2 = U1 = %'L .

'g%ate. The same will happen to the
need to only find one. Take \; = 2 + 67, we

—

SO
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7.4: Basic theory of systems of first order lin-
ear equation
General form of a system of first order equations written in matrix-vector

form:
7 =Pt)%+ 7.

If ¢ =0, it is homogeneous. We only consider this case, so

Superposition: If #;(t) and Z5(t) are two solutions of the homogeneous
system, then any linear combination ¢,&; + cos is~also a solution.

where X is a matrix whose columng are t tor@il (1), Zo(t), -+, Zn(t).

If det X (t) # 0, then (Z1(t), Zo(2),
functions.

A set of linearly independe
a fundamental set of solutio

The general solution
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7.5: Homogeneous systems of two equations
with constant coefficients.

We consider the following initial value problem:

{x’l = axy + b LCs: {:171(0) = 7

xh = cxy+dxg

In matrix vector form:
o A= N A1 S [ a b
T = AZ, x-(xz), x(O)-(@) A—(cd).

A

Claim: If (), ¥) is an eigen-pair for A, then z = e\, d.€0labion to 77 = AZ.

Proof.
5/ — (6)\t,l—}»)l _ (ekt)l,&»: )\€>\t17

AZ = A(M =M (WG =M\
Therefore 7 = AZ so 7 is a solution.

Steps to solve the initial valwye\problem:

e Step I: Find eigénvalues\af AN\, Ao.
e Step II: Find the cerresponding eigenvectors oy, Us.

Step III: Form two solutions: 2, = eM@,, 2, = e 0.

Step IV: Check that zj, 25 are linearly independent: the Wronskian
W(Z’l, 52) = det(Zl, ZQ) % 0.

(This step is usually OK in our problems.)

Step V: Form the general solution: ¥ = ¢12] + ¢225.

If initial condition Z(0) is given, then use it to determine ¢y, cs.
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We will start with an example.

L (11
T = AZ, A—<41).

First, find out the eigenvalues of A. By an example in 7.3, we have

At=-1, A =3, 271:(_12), 271:<;>,

So the general solution is

- - S _ 1 1
T = M) + ety = cre ( _2 ) + cpe™ ( 5 ) :

Write it out in components:

{n -

Qualitative property of the soluti

Example 1. Solve

If ¢ > 0, then 1 —
If ¢co < 0, then
n i, rs: look at ﬁ—;:

cre”t + cpedt
To  —2cie”t + 2cqe3t

As t — oo, we have

r1 et 1

9 - 2c,e3t 2
This means, x; — 2x5 asymptotically.

e What happens when ¢t — —o00?
Looking at i—;, we see as t — —oo we have
ry et 1
ro  —2cie~t 2

which means, ;1 — —2x, asymptotically as t — —oo.
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Phase portrait. is the trajectories of various solutions in the x5 — x; plane.

Since A is non-singular, then # = 0 is the only critical point such that
¥ =Ar=0.

cpedt

2cye3t

x 1
If ¢, = 0, then =1 =35 so the trajectory is a straight line
T2

Ir = 2$2.
Note that this is exactly the direction of .

Since Ay = 3 > 0, the trajectory is going away from 0.
t

cle
—2c1e™

If ¢c; =0, then I} =
line x; = —2z5.
Note that this is exactly the direction of ;.

Since Ay = —1 < 0, the trajectory is going o

;= —%, so the trajectory is another straight

o

J

ctories should start
0 line 1 = 2z asymp-

For general cases where ¢y, ¢y are not 0, the
(asymptotically) from line x; = —22», and goe
totically as t grows.

L2

AN

T

—

(%1

Definition: If A has two real eigenvalues of opposite signs, the origin (critical
point) is called a saddle point. A saddle point is unstable.

Tips for drawing phase portrait for saddle point: only need the eigenvalues
and eigenvectors!
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General case: If two eigenvalues of A are A\ < 0 and Ay > 0, with two
corresponding eigenvectors o, v. To draw the phase portrait, we follow
these guidelines:

e The general solution is

T = CleAltﬁl + 026)\2t172.

o If ¢; = 0, then the solution is ¥ = c,e*?'%,. We see that the solution
vector is a scalar multiple of ¥,. This means a line parallel to v, through
the origin is a trajectory. Since Ay > 0, solutions |Z| — oo along this
line, so the arrows are pointing away from the origin.

A

e The similar other half: if ¢ = 0, then theSselittion is ¥ = c¢;e!v;.
We see that the solution vector is a scalar ? >{ #;. This means
a line parallel to v; through the origin is a twxajectory. Since A\; < 0,
solutions approach 0 along this lin the arrows are pointing toward

the origin. Q

e Now these two lines cut the régions. We need to draw at
least one trajectory in each regi e region, we have the general

case, i.e., c; # 0 and 0. We need’to know the asymptotic behavior.
We have

=> I — 026)\2t172

—00, => T — ety

We see these are exactly the two straight lines we just made. This
means, all trajectories come from the direction of v, and will approach
Uy as t grows. See the plot below.
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T2

X1

N

Example 2. Suppose we know the eigenvaluessand.tigenvectors of A:

M =3, 171:(_11), X3, @:(é).

Then the phase portrait looksNike thig:

X2

\ 172

v
:
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If the two real distinct eigenvalue have the same sign, the situation is quite
different.

Example 3. Consider the homogeneous system

Y Ao (=3 2
T = AZ, A_<1 _2>.

Find the general solution and sketch the phase portrait.

Answer.

e Kigenvalues of A:

-3 2

_ N 45A 4 = (A +1)(M+4) = 0,

det(A—AI) = det (

So A1 = —1, Ay = —4. (Two eigen negative!)
e Find the eigenvector for \;.

o= (V5L NI - (3 2)(0)- (1)

b@l, we get v = (1,1)T.

This gives a = b..Choo

e Find the eigenvec Call it 7y = (¢, d)7,
I 2 e (12 (c\ [0

- (2 () (1) ()
This gives ¢ + 2d = 0. Choose d = 1, then ¢ = —2. So ¥, = (—2,1)7.

e General solution is
S A1t~ ot =~ 1 —at [ 2
Z(t) = 1™ + e’ Vy = cre 1 + e 1 )

Write it out in components:

r1(t) = cre7t —2ce™
To (t) = cle_t + 626_4t '
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Phase portrait:

If c; = 0, then ¥ = c,e*?'¥,, so the straight line through the origin

in the direction of ¥ is a trajectory. Since Ay < 0, the arrows point
toward the origin.

If ¢ = 0, then ¥ = c;eM'%), so the straight line through the origin
in the direction of ¥} is a trajectory. Since A\; < 0, the arrows point
toward the origin.

For the general case, when ¢; # 0 and ¢, # 0, we have

A

2%72

t— —o0, => T —0, T — cye
t — o0, => |Z] — oo,

So all trajectories come into the
approach the origin in the directio

T

In the previous example, if Ay > 0, Ay > 0, say A\; = 1 and Ay = 4, and v, U
are the same, then the phase portrait will look the same, but with all arrows

going away from 0.



Definition: If \; # )\, are real with the same sign, the critical point ¥ = 0
is called a node.

If Ay > 0, Ay > 0, this node is called a source.
If Ay <0, Ay < 0, this node is called a sink.

A sink is stable, and a source is unstable.

Example 4. (Source node) Suppose we know the eigenvalues and eigenvec-
tors of A are

A

T = M0, + o™y = 1

xq

Summary:
(1). If A\; and A, are real and with opposite sign: the origin is a saddle point,
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and it’s unstable;

(2). If A\; and Ay are real and with same sign: the origin is a node.
If A1, A2 > 0, it’s a source node, and it’s unstable;

If A1, A2 < 0, it’s a sink node, and it’s stable;
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7.6: Complex eigenvalues

If A has two complex eigenvalues, they will be a pair of complex conjugate
numbers, say A1 o = a £15, B #0.

The two corresponding eigenvectors will also be complex conjugate, i.e,

—

1 = V2.

We have two solutions

51 = €>\1t171, 52 = €>\2t172.

They are complex-valued functions, and they a

re complex conjugate.
We seek real-valued solutions. By the principle o i

tion,

U= 5( 1+ Z2) = Re(7)), = —(Z

are also two solutions, and they are

One can show that they are lineaxly

fundamental solutions. The general ’on S then ¥ = 191 + cols.

Now let’s de:rive the formul

the i;%e al solution. We have two eigenval-
ues: A and A, two eigenvecto

, which we can write
B U = U, + i0;.
One solution can be written

7 = Mg = TG 4 iT;)e (cos Bt + isin Bt) - (T, + iT))

e
e (cos Bt - ¥, — sin Bt - ¥; + i(sin Bt - T, + cos Bt - T;)) .

The general solution is
T = c1e™ (cos Bt - U, — sin Bt - U;) + c2e® (sin Bt - ¥, + cos Bt - T;) .

Notice now if a = 0, i.e., we have pure imaginary eigenvalues. The ¥ is a
harmonic oscillation, which is a periodic function. This means in the phase
portrait all trajectories are closed curves.
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Example 1. (pure imaginary eigenvalues.) Find the general solution and
sketch the phase portrait of the system:

o e (0 —4
' = AZ, A_(l 0).

Answer. First find the eigenvalues of A:
det(A— X)) =\ 4+4=0, Ao = F2i.

Eigenvectors: need to find one ' = (a,b)? for A = 2i:

(A=A =0, (

then

—2cy sin 2t 4+ 2¢5 cos 2t
xo(t) = ¢1c082t+ cysin2t.

Phase portrait:

e 7 is a periodic function, so all trajectories are closed curves around the
origin.

e They do not intersect with each other. This follows from the uniqueness
of the solution.

e They are ellipses. Because we have the relation:

(21/2)* + (72)® = constant.
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e The arrows are pointing either clockwise or counter clockwise, deter-
mined by A. In this example, take Z = (1,0)7, a point on the x;-axis.
By the differential equations, we get 7’ = AZ = (0,1)T, which is a
vector pointing upward. So the arrows are counter-clockwise.

See plot below.

X1

Y
(&

&

center. A center is stable
totically stable (b/c solutions

Definition. The origin in this ¢
(b/c solutions don’t blow up), but is
don’t approach the origin ime goes)’

If the complex eigen ~zero real part, the situation is still dif-

ferent.

Example 2. Consider the system

o1 A= (3 =2
' = AZ, A—(4_1>.

First, we compute the eigenvalues:
det(A— X)) =B —=N)(-1-X)+8=X—2\+5=0,

)\172:1j:2’é, = Oézl, ﬁZQ

Eigenvectors: need to compute only one @ = (a,b)T. Take A\ = 1 + 2i,

(A_M)ﬁ:(2_42i —2_—22@')'(2):(8)’
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(2 — 2i)a — 2b = 0.
Choosing a = 1, then b =1 —1, so

() () ()

So the general solution is:

— o t . ]- - . . 0 t . . 1 o . 0
I = ce {coth (1 sin 2t 1 + co€’ |sin 2t 1 cos 2t 1

_ e cos 2t 4ol sin 2¢
- cos 2t + sin 2t 2 sin 2t —cos 2t )’

she-e!. If this term
fiaginary), then the
ould be closed curves
¢’ will get spiral curves.

around origin, as the center. But with th

Since v = 1 > 0, all arrows are pai the origin.

To determine the direction of rota ed to go back to the original
equation and take a look a i

Consider the point (z; = < O)@hen 7 = A7 = (3,4)T. The arrow

should point up wit

Therefore, the spirals are ting counter clockwise. We don’t stress on the
exact shape of the spirals. See plot below.
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o towards the origin. The origin
will be a stable critical poin exa@ale is provided in the text book. We

The eigenvalues and eigenvectors are:

1 . L 1 (1 (0
)\1,2——§:|:z, U_<j:i)_<0)iz<l)'

Since the formula for the general solution is not so “friendly” to memorize,
we use a different approach.

We know that one solution is

o 5 (1 1 ) 0
7=eMy =e (;HtKO)iz(Ol )}
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This is a complex values function. We know the real part and the imaginary
part are both solutions, so work them out:

R 1 e 0 . 1 ) 0
Z=e 2 {cost(()) smt(1>+zsmt(0)+zcost(1 .

The general solution is:

and we can write out each component

x1(t) = e 2'(cicost + cysin

Nl= N

1o(t) = e 2'(—cysint + ok

Phase portrait: If ¢; = 0, we have

xf + x% = (e_%t)zcg

If ¢o = 0, we have :
+ a3 9

cz@show:

In general, if ¢; # 0 and ¢

The trajectories will be spirals, with arrows pointing toward the origin. To
determine with direction they rotate, we check a point on the z; axis:

1 1
= —»{_ = 2
x—(o), :E—Ax—(_l).

So the spirals rotate clockwise. And the origin is a stable equilibrium point.
See the picture below.
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7.8: Repeated eigenvalues

Here we study the case where the two eigenvalues are the same, say A\; =
A2 = A. This can happen, as we will see through our first example.

Example 1. Let

a=(13)

1-X -1
1 3—A

Then

det(A—M\I) = det ( ) = (1-A)(3=A)+1 = A2—4 +3+1 = (A-2)* =0,

1s:

We need to find a se v. We have
AZy = AteMT = teM (AD) = teM AT = MeMT
If 75 is a solution, we must have
7=A7 — 14+X=X

which doesn’t work.

Try something else: 7, = teM¥ + je*. (here 77 is a constant vector to be
determined later). Then

2 = (14 M)eMT + Aije = MeMT + M (T + i)
AZy = XteMT + Afje.
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Since % is a solution, we must have 2 = AZ. Comparing terms, we see we
must have
U+ Aij = A, (A= X)ij=".

This is what one uses to solve for 7. Such an 77 is called a generalized eigen-
vector corresponding to the eigenvalue .

Back to the original problem, to compute this 77, we plug in A and A, and

get
-1 -1 mo\ 1 _
()= e
- 0
We can choose 1, = 0, then 7, = —1, andson:( )

So the general solution is

r = 6151+0252

Phase portrait:

e Ast — oo, we have |
e Ast — —o0, Wi

o Ifcy =0, then ¥ =
of U'is a trajectory.

~s0 the line through the origin in the direction
A > 0, the arrows point away from the origin.

o If ¢; = 0, then & = cy(teMT + eMif). For this solution, as t — oo, the
dominant term in # is te*#. This means the solution approach the
direction of ¥. On the other hand, as t — —o0o, the dominant term in ¥
is still teM%. This means the solution approach the direction of ¢. But,
due to the change of sign of ¢, the & will change direction and point
toward the opposite direction as when t — oc.

How does it turn? We need to go back to the system and check the
directional field. At & = (1,0), we have & = (1,1)%, and at # = (0,1),
we have @ = (—1,3)”. There it turns kind of counter clockwise. See
figure below.
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e For the general case, with ¢; # 0 and ¢y # 0, a similar thing happens.
As t — oo, the dominant term in ¥ is teM#. This means the solution
approach the direction of . As ¢t — —oo, the dominant term in ¥ is
still teM7. This means the solution approach the direction of ¥. But,
due to the change of sign of t, the & will change direction and point
toward the opposite direction as when ¢t — oco. See plot below.

-3t z, |

-4+ o

-5 1(\\ 1 1 I I I

Remark: If A < 0, the phase portrait looks the same except with reversed
arrows.

Definition. If A has repeated eigenvalues, the origin is called a improper
node. It is stable if A < 0, and unstable if A > 0.

Example 2. Find the general solution to the system ¥’ = ( __025 _2 4 ) z.
We start with finding the eigenvalues:

det(A—AI) = (=2=A)(=4=A)+1 = X246 +8+1 = (A+3)* =0, A\ =X =A= -3
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We see we have double eigenvalue. The corresponding eigenvector @ = (a, b)T

(A_M)ﬁ:(_—zog3 —42+3)'<Z>:(—(1).5 31)'(2):0

So we must have a + 2b = 0. Choose a = 2, then b = —1, and we get

U= ( _21 ) To find the generalized eigenvector 77, we solve

aowien (2 )(2)-(5)

This gives us one relation 7, + 21, = 2. Choose 7, = 0, then we have 7, = 1,
and so 17 = ( (1) ) The general solution is

7= 616)\t'l7+02(t6)\t'l7+€)\tﬁ) — Cl€3t ( _2 +cy |:t€ _21 —|—e3t ( _? ):| .

The origin is an improper node which is unstable.
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Summary of the chapter:

‘ A2 ‘ eigenvalues ‘ type of origin ‘ stability
real Al A <O saddle point unstable
real A1 >0, > 0, A\ # Ay | node (source) unstable
real AL <0, <0,A1 # Ay node (sink) stable
real A== A improper node | stable if A < 0, unstable if A > 0
complex AMag=1%p center stable but not asymptotically
complex Ma=a=xif spiral point | stable if & < 0, unstable if & > 0

119



