Republic of Iraq Ministry of Higher Education and Scientific Research University of Babylon College of Education – Ibn Hayan Department of Mathematics

On Some Types of Bitopological Groups with respect to ij - α - Open Sets

A thesis

Submitted to the Department of Mathematics of College of Education - Ibn Hayan of University of Babylon in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mathematics

By

Qays Hatem Imran Al-Rubaye

Supervised by

Assist .Prof. Dr. Luay Abd Al-Haine Al-Swidi

April 2010

<u>Abstract</u>

The goal of this work is to study some types of bitopological groups with respect to ij - α - open sets. We state below some of the main results that are obtained in this work :

1. The inversion function I in a bitopological group of type (R), where R = 1, 2, ..., 8 is ij - α - homeomorphism.

2. The inversion function I in a bitopological group of type (R), where R = 2,6,8 is ij - α - irresolute - homeomorphism.

3. A nice bitopological group of type (R) , where $R = 1, 2, \dots, 8$ is ij - α - homogeneous .

4. A nice bitopological group of type (R), where R = 2,4,5 is $ij - \alpha$ -irresolute - homogeneous .

5. Let G be a nice bitopological group of type (4). Then :

(i) H is an algebric subgroup of G implies ij - α - cl(H) is a subgroup of G

(ii) *H* is an algebric invariant subgroup of *G* implies $ij - \alpha - cl(H)$ is an invariant subgroup of *G*.

6. The ij - α - component of the identity in a nice bitopological group of type (4) is an invariant subgroup of G.

7. Let *H* be ij - α - dense algebric subgroup of a nice bitopological group *G* of type (4) and let *K* be an invariant algebric subgroup of *H*. Then ij - α - cl_{*G*}(*K*) is an invariant subgroup of *G*.

8. Let G be a bitopological group of type (1) and H be an invariant algebric subgroup of G. Let G/H be the quotient space of the first type and f be the canonical function from G into G/H. Then :

(i) f is onto

(ii) f is i - continuous

(iii) f is ij - α - irresolute

(iv) When G is a nice bitopological group of type (4), then f is ij - α - open

9. Let G be a nice bitopological group of type (4) and H be an invariant algebric subgroup of G then the quotient space of the first type G/H is an ij- α -irresolute - homogeneous.

10. Let G be a nice bitopological group of type (4) and H be an invariant algebric subgroup of G. Let G/H be the quotient space of the first type. Then G/H is discrete space iff H is ij - α - open in G.

11. Let *G* be a bitopological group of type (1) and *H* be an invariant algebric subgroup of *G*. Let G/H be the quotient space of the first type .

Then G is ij - α - compact implies G/H is ij - α - compact.

12. Let *H* be an invariant algebric subgroup of a bitopological group (G, *) of type (1) and G/H be the quotient space of the first type. Then $(G/H, \theta)$ is a bitopological quotient group of type (1).

(where θ is the usual operation on G/H).

13. Let G be a bitopological group of type (1) and H is an invariant algebric subgroup of G. Then the canonical function f of the first type from G into G/H is a bitopological group homomorphism.

14. Let G be a nice bitopological group of type (4). Let H and M

are two invariant algebric subgroups of G such that $H \subseteq M$. And let

G/M, G/H and (G/H)/(M/H) be the quotient spaces of the first type. Then G/M is $ij - \alpha$ - irresolute - homeomorphic to (G/H)/(M/H).