

جمهورية العراق وزارة التعليم العالي والبحث العلمي جامعة القادسية كلية التربية – قسم الكيمياء

تحضير مشتقات جديدة تحتوي على حلقة غير متجانسة لسكر D- فركتوز

دراسة مقدمة

الى مجلس كلية التربية - جامعة القادسية كجزء من متطلبات نيل درجة الى مجلس كلية التربية والكيمياء والكيمياء العضوية

من قبل الطالبة اسراء عبد الحسن حمدان بكالوريوس علوم كيمياء/جامعة ذي قار-(2004)

اشراف الاستاذ المساعد الدكتور نبيل عبد عبد الرضا

2012 ھـ 1433

Republic of Iraq
Ministry of Higher Education and Scientific Research
University of Qadissiya
College of Education-Department of Chemistry

Synthesis of New Heterocyclic Derivatives of D-Fructose

A Study Submitted

To The Council of the College of Education in

AL-Qadissiya University in Partial

Fulfilment of the Requirements for the Degree of

Master in Chemistry-Organic chemistry

By

Israa Abd Alhasan Hamdan
B. Sc. Thi-Qar University (2004)

Supervised by Assist.Prof.Dr. Nabeel Abd Abd Al-Radha

2012 1433

Abstract

The research includes synthesis of new derivatives for D-fructose contain heterocyclic ring. To obtain these derivatives it is required to put a strategy to make work easy, so that dividing the work into three stages:

The first stage included the preparation of the following raw materials for this purpose , where attended methyl-O-fructofuranose [100] which contains free primary hydroxyl groups at the position of carbon atom (C-1) and carbon atom (C-6) ,and prepare 1,2:4,5-Di-O-cyclohexylidene- β -D-fructopyranose [110] ,which contains a free hydroxyl group at the position of carbon atom (C-3), and preparation 2,3;4,5-Di-O-isopropylidene- β -D-fructopyranose [115],which contains a free hydroxyl group at the position of carbon atom (C-1).

The second stage included sulfonation of compounds [100], [110], and [115] and conversion of free hydroxyl group in these compounds to a good leaving groups through their reaction with P-Toluenesulfonyl chloride and obtain derivatives [101], [111] and [116].

And finally doing reaction of a bimolecular nucliophilic substitution reaction, the compounds [101],[110],[116],react with,2-mercaptobenzothiazol, 2-mercaptobenzoimidazol, 2-mercaptobenzoxazol, and 2-mercaptothiazol to obtain sugar derivatives containing a heterocyclic ring and preparation of the following derivatives:

1- Preparing derivatives in which the substitution has been in poition of carbon atoms at (C-1), and position of the carbon atom at (C-6) as well as substitutes the positions of carbon atoms for methyl-O-D-fructofuranose the reaction of compound [101] with mercaptans mention above in the DMF and obtain [102], [103], [104], [106], [107] and [108]. The derivative [105] has come from reaction of the compound [110] with 2-mercaptothiazol in dioxan with presence of sodium metal as a catalyst.

2- Preparing derivatives in which the substitution has been in the position of carbon atom at (C-3) of the compound [111] where the substitution reaction

occurred in dioxan in presence of sodium as a catalyst and obtain the derivatives [112], [113] and [114].

R: Mercapto compounds

3- Preparing derivatives in which the substitution has been in the position of carbon atom at (C-1) of the compound [116] in two ways: the first way treating the compound [116] with mercaptans in dioxan with presence of sodium as a catalyst and obtain [117] and [118]. The second: way reacting the same compound with mercaptans in the DMF in presence of tetraethyl ammonium as a catalyst and obtain [119], [120] and [121], and may be these prepared derivatives have biological activity.

$$\begin{array}{c|c} CH_3 \\ C-CH_3 \\ CH_2 \\ OO \\ OO \\ H_3C \\ C-CH_3 \\ \end{array}$$

$$\begin{array}{c|c} H_3C \\ OO \\ C-CH_3 \\ \hline \end{array}$$

$$\begin{array}{c|c} C-CH_3 \\ \hline \end{array}$$

$$\begin{array}{c|c} H_3C \\ OO \\ C-CH_3 \\ \hline \end{array}$$

$$\begin{array}{c|c} C-CH_3 \\ \hline \end{array}$$

$$\begin{array}{c|c} C-CH_3 \\ \hline \end{array}$$

The structures of all the products obtained have been identified by spectral (IR) ,H¹-NMR ,C.H.N. element analysis and by some physical properties

الخلاصـــة

يتضمن البحث تحضير مشتقات كاربوهيدراتية جديدة لسكر الفركتوز تحتوي على حلقة غير متجانسة وللحصول على هذه المشتقات تطلب وضع ستراتيجية تسهل الوصول الى الهدف: اذ قسم العمل الى ثلاث مراحل:

المرحلة الاولى وتضمنت تحضير المواد الاولية التالية لهذا الغرض حيث حضر مثيل-O-فركتوفيورانوز [100] الذي يحتوي على مجاميع هيدروكسيل اولية حرة في موقع ذرة الكاربون 1وذرة كاربون 6 وتم تحضير 1,2:4,5-ثنائي O- سايكلوهكسيلدين O- فركتوبايرانوز[110] الذي يحتوي على مجموعة هيدروكسيل حرة في موقع ذرة الكاربون 3 (الوحيدة غير محمية) وتحضير ثنائي O- الايزوبرويلدينO- فركتوبايرانوز [115] الذي يحتوي على مجموعة هيدروكسيل حرة في الموقع ذرة الكاربون 1.

المرحلة الثانية تضمنت سلفنة المركبات[100]و [110]و[115] حيث تم تحويل مجموعة الهيدروكسيل الحرة الى مجاميع مغادرة جيدة بتفاعلها مع كلوريد - بارا- تلوين سلفونيل والحصول على المشتقات [115],[111]

والمرحلة الاخيرة تم فيها اجراء تفاعلات التعويض النيوكليوفيلي ثنائي الجزيئة اذ فوعلت المشتقات[101] و [111] و [116] مع 2-مركبتوبنزوثيازول و2-مركبتوبنزواميدازول و2-مركبتوبنزواميدازول مركبتوبنزواوكزازول و2-مركبتو ثيازول للحصول على مشتقات سكرية تحوي على حلقة غير متجانسة و تحضير المشتقات التالية:

1- تحضير مشتقات تم فيها التعويض بموقع ذرة الكاربون 1 وموقع ذرة الكاربون 6 وكذلك التعويض بموقع ذرة الكاربون 1 المتيل D-B-D-B-D-فركتوفيورانوز وذلك بتفاعل المركب [101] مع المركبتانات اعلاه في الـ D-D-D-و [103] و [104] و [105] و [106] و [106] و [107] و أعدى المركب [107] مع 2-مركبتوثيازول في الدايوكسان بوجود فلز الصوديوم كعامل مساعد.

2- تحضير مشتقات تم فيها التعويض بموقع ذرة الكاربون 3 للمركب [111] حيث اجري تفاعل التعويض في الدايوكسان بوجود الصوديوم كعامل مساعد والحصول على المشتقات [112] و [113] و [114].

R: Mercapto compounds

3- تحضير مشتقات تم فيها التعويض بموقع ذرة الكاربون 1 للمركب [116] بطريقتين الاولى معاملة المركب[116] مع المركبتانات في الدايوكسان وبوجود الصوديوم كعامل مساعد والحصول على [117]و[118], والثانية بتفاعل نفس المركب مع المركبتانات بـ DMFبوجود رباعي بيوتيل الامونيوم كعامل مساعد والحصول على [119]و[120] و [121]. ويحتمل ان لهذه المشتقات المحضرة فاعلية بايولوجية.

وقد تم تشخيص المركبات باستخدام الطرق الطيفية والاعتماد على بعض الخواص الفيزيائية , حيث اضهرت بشكل واضح تحضير المركبات .