
Written out in full, the example problem above looks like this:

min z =8x11+6x12+10x13+9x14+9x21+12x22+13x23+7x24+14x31+9x32+16x33+5x34

s.t. x11 +x12 +x13 +x14 ≤ 35

x21 +x22 +x23 +x24 ≤ 50

x31 +x32 +x33 +x34 ≤ 40

x11 +x21 +x31 ≥ 45

x12 +x22 +x32 ≥ 20

x13 +x23 +x33 ≥ 30

x14 +x24 +x34 ≥ 30

x11, x12, x13, x14, x21, x22, x23, x24, x31, x32, x33, x34 ≥ 0

It should be clear that this is an LP problem. However, it has some

special features that make it worthwhile developing specialised methods for

its solution (instead of depending on the various kinds of Simplex Method).

For example:

• As noted before, each variable xij appears in exactly one supply

constraint and exactly one demand constraint.

• Note the “patterns” exhibited by the set of constraints.

• Within each constraint, every variable either has the coefficient 0 or +1.

• The matrix representing the constraints therefore consists entirely of 0s

and +1s, all arranged in a specific pattern.

Fig. 6 shows a graphical representation of the example problem, with the

variables xij represented by lines connecting plants to cities. Fig. 7 shows

the stated optimal solution for the problem (with dashed lines indicating those

routes which are not being used to transmit any power)

 

.
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Fig. 7
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General Description of a Transportation Problem

A transportation problem (TP) is specified by:

• A set of m supply points from which some commodity is shipped.

Supply point i can provide at most si units of the commodity.

• A set of n demand points to which the commodity is shipped. Demand

point j requires at least dj units of the commodity.

• Each unit of the commodity shipped from supply point i to demand point j

incurs a cost of cij .

• The problem requires the shipping of the commodity from supply points to

demand points in such a way as to minimise the total cost of shipping,

while meeting all supply and demand restrictions.

Let xij be the number of units of the commodity shipped from supply point i

to demand point j. Then the mathematical formulation of the Transportation

Problem is:

min

m

 

∑

i=1

n∑

j=1

cijxij

s.t.

n∑

j=1

xij ≤ si, for i = 1, . . . ,m

m∑

i=1

xij ≥ dj , for j = 1, . . . , n

xij ≥ 0 for i = 1, . . . ,m and j = 1, . . . , n .



Balanced Transportation Problems

You may have noticed, in the example problem, that the total supply of

electricity available exactly equalled the total amount demanded. A general

TP which satisfies this requirement is called a Balanced Problem:

m∑

i=1

si =

n∑

j=1

dj .

In such a case, it immediately follows that all supply constraints and all de-

mand constraints must be satisfied as equalities.

(If you are not sure that this is true, think about what would happen if, for

example, Plant 1 only supplied 30 million kwh out of its maximum supply

capability of 35. Then the other two plants would not have enough total

capacity to meet all of the remaining demand, meaning that at least one city’s

demands would be partially or totally unmet.) Therefore, the mathematical

formulation of a Balanced TP takes this form:

min

m∑

i=1

n∑

j=1

cijxij

s.t.

n∑

j=1

xij = si, for i = 1, . . . ,m

m∑

i=1

xij = dj , for j = 1, . . . , n

xij ≥ 0 for i = 1, . . . ,m and j = 1, . . . , n .

(Later, we will see that it is very easy to find an initial bfs for a balanced TP.

 

)



From now on, we will assume that (in any balanced TP)

si ≥ 0 for i = 1, . . . ,m , and

dj ≥ 0 for j = 1, . . . , n .

Clearly, no feasible solutions can exist for a balanced TP if any si < 0 or any

dj < 0 (check the supply and demand constraints).

A TP is completely specified by the supply, the demand and the costs, so this

data and any BFS may conveniently be represented in a Transportation

Tableau. The cell in row i and column j corresponds to the variable xij . The

cost cij is entered in the sub-cell in the upper-left-hand-corner. If xij is a

basic variable, then its value is entered into the ijth cell (otherwise, the value

of xij is zero).

1 2 . . . n supply

c11 c12 c1n

1 . . . s1

c21 c22 c2n

2 . . . s2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

cm1 cm2 cmn

m . . . sm

demand d1 d2 . . . dn

 



As an example of the Transportation Tableau, here is the optimal solution for

the PowerCo problem:

1 2 3 4 supply

8 6 10 9

1 10 25 35

9 12 13 7

2 45 5 50

14 9 16 5

3 10 30 40

demand 45 20 30 30

(Note that it is very easy to check that all the supply and demand constraints

are satisfied, just by summing along the rows and down the columns.)

Total cost = 6× 10 + 10× 25 + 9× 45

+ 13× 5 + 9× 10 + 5× 30

= 102

 

0



Balancing an Unbalanced Transportation Problem

• If

total supply > total demand

then we just create a dummy demand point that has a demand equal to

the excess of the supply over the demand. Because shipments to the

dummy demand point are not real shipments, they are assigned costs of

zero. (When the problem is actually solved, shipments to the dummy

demand point indicate unused supply capacity.)

• If

total supply < total demand

then the TP has no feasible solution, We can either leave the problem at

this point or it may be desirable to explore what happens when we leave

some demand unsatisfied by creating a dummy supply point with

capacity equal to the excess of the demand over the supply. We can

assign differing penalty costs to shipments from the dummy supply point

if we wish to exercise a measure of control over which demand points may

have their demands unmet (which will be indicated in the solution by

shipments from the dummy supply point)

 

.



Examples

(1) Excess Supply: consider the PowerCo problem with the demand for City

1 reduced to 40 million kwh. Then we create a dummy demand point (“City

5”) with a demand of

(35 + 50 + 40) - (40 + 20 + 30 + 30) = 5 million kwh. From each plant, the cost

of shipping to City 5 is set to be zero.

Below is a Transportation Tableau containing the optimal solution for the

revised problem:

1 2 3 4 5 supply

8 6 10 9 0

1 15 20 35

9 12 13 7 0

2 40 10 50

14 9 16 5 0

3 5 30 5 40

demand 40 20 30 30 5

Because x35 = 5, we conclude that 5 million kwh of the maximum output of

Plant 3 will be unused

 

.



(2) Excess Demand: two reservoirs are available to supply the water needs

of three cities. Each reservoir can supply up to 50 million gallons of water per

day. Each city wishes to receive 40 million gallons per day. For each million

gallons of water that is not supplied per day, there is a penalty (specified by

contract):

• For City 1, the penalty is $20.

• For City 2, the penalty is $22.

• For City 3, the penalty is $23.

The cost of transporting a million gallons from each of the reservoirs to each

of the cities is given by:

To

From City 1 City 2 City 3

Reservoir 1 $7 $8 $10

Reservoir 2 $9 $7 $8

We add a dummy reservoir (Reservoir 3) which “supplies” the excess
demand of (40 + 40 + 40) - (50 + 50) = 20 million gallons per day. The solution
turns out to be:

1 2 3 supply

7 8 10

1 20 30 50

9 7 8

2 10 40 50

20 22 23

3 20 20

demand 40 40 40

City 1 has 20 million gallons of its demand unmet.

178
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Basic Feasible Solution: 

 
     Transportation problem containing (n + m) of structured constraints and  

(n × m) of variables. A feasible solution to a transportation problem is said to 

be a basic feasible solution if the number of basic variables = (m + n – 1) 

 

We can find basic feasible solutions using one of the following ways: 

1- North–west corner  

2- Least cost 

3- Vogel approximation method (penalty method)  

     The three methods differ in the "quality" of the starting basic solution they 

produce, in the sense that a better starting solution yields a smaller objective 

value. In general, though not always, the Vogel method yields the best starting 

basic solution, and the northwest-corner method yields the worst. The tradeoff 

is that the northwest-corner method involves the least amount of computations.  
 

1- North-west corner  

     The method starts at the northwest-corner cell (route) of the table (variable 

x11). 
Step 1. Start with cell (1, 1) from the left hand (topmost left corner) and assign 

it the maximum possible amount. 

Step 2. Then move to the right-hand cell (1, 2) if there is still any available 

quantity left, otherwise move to the down cell (2, 1) and assign it maximum 

possible amount. 

Step 3. Repeat step 2 and continue until all the available quantity is finished. 

============================================== 
 

 

 

 

 

Example: Use the north-west corner to find the basic feasible solution for the 

following transportation problem: 

Solution:  
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∑ 𝑠𝑖 𝑖=𝑚
𝑖=1 =  ∑ 𝑑𝑗  𝑗=𝑛

𝑗=1 = 45 

   

 

 

 

 

 

 

 

 

basic variables are: 

 

non basic variables is : 
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the number basic variables = m + n – 1 =3+4-1=6 

So this solution is basic feasible solution 
 
 

 
 

 
 

============================================ 
Example: Use the north west-corner to find the basic feasible solution for the 

following  transportation problem : 

 

 

 

 

 

 

 

 

Solution:  ∑ 𝑠𝑖  𝑖=𝑚
𝑖=1 =  ∑ 𝑑𝑗  𝑗=𝑛

𝑗=1 = 34000 

 
 

plants warehouses supply 

W1 W2 W3 W4 

P1 21 32 52 12 7000 

P2 72 32 42 62 9000 

P3 42 10 72 22 18000 

Demand 5000 8000 7000 14000 34000 

 

 
 

Basic variables are: P1W1=5000, P1W2=2000, P2W2= 6000, P2W3=3000, 

P3W3= 4000, P3W4= 14000 
 

Non basic variables are: P1W3, P1W4, P2W1, P2W4, P3W1, P3W2=0 

total cost of the transportation problem is: 

 

plants warehouses supply 

W1 W2 W3 W4 

P1 21 32 52 12 7000 

P2 72 32 42 62 9000 

P3 42 10 72 22 18000 

Demand 5000 8000 7000 14000  

022
2 

2000 5000 0 0 

0   3000 6000 0 

0 4000 0 14000 
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Z= 1083000 

 

The number basic variables = m + n – 1 =3+4-1=6. So this solution is a basic 

feasible solution. 

 

2- Least-Cost Method: 
 

     The least-cost method finds a better starting solution by concentrating on the 

cheapest routes. The method assigns as much as possible to the cell with the 

smallest unit cost. Next, the satisfied row or column is crossed out and the 

amounts of supply and demand are adjusted accordingly. 

Step 1: Choose the cell with the lowest cost and assign it as much as possible. If 

such a cell of the lowest cost is not unique, select any one of these cells.  

Step 2: Again, examine the cost matrix and select the cell with the lowest cost 

(the cell in which the allocation has been made is not considered). Allocate 

there as much as possible. 

Step 3: Continue the procedure until all the available quantity is finished. 

 

Example: Use the least-cost method to find the solution to the following 

transportation problem: 

 

Solution:  ∑ 𝑠𝑖 𝑖=𝑚
𝑖=1 =  ∑ 𝑑𝑗  𝑗=𝑛

𝑗=1 = 50 

 

 

Destinations 
D1 D2 D3 D4 Supply 

Source 

S1 10 2 20 11 15 

S2 12 7 9 20 25 

S3 4 14 16 18 10 

Demand 5 15 15 15 50           50 

Destinations 

D1 D2 D3 D4 Supply 
Source 

S1 10 2 20 11 15 0 15 2 2 
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Basic variables are: ……………… 
 

Non basic variables are: ……………….. 

 

The total cost of the transportation problem is: 

 
Z= 475 

=============================================================== 

S2 12 7 9 20 25 

S3 4 14 16 18 10 

Demand 5 15 15 15  

0 2 15 10 

5 0 0 5 
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3- Vogel Approximation Method (VAM) 

 

VAM is an improved version of the least-cost method that generally, but not 

always, produces better starting solutions. 

 

Step 1: Write the differences between the smallest and the second smallest costs 

in each column below the corresponding column. 

 

Step 2: Write the differences between the smallest and the second smallest costs 

in each row to the right of the corresponding row. 

These individual differences are regarded as a penalty for making assignments 

in the second-lowest cost cell in place of the lowest cost cell in each row (or 

column). 

 

Step 3: Select the row or column for which the penalty is the largest and put the 

maximum possible amount to the cell with the lowest cost in that particular row 

or column. If there are more than one largest penalty row or column, then select 

any one of them.  

 

Step 4: Cross (or leave) row or column in which the requirement (or demand) has 

been satisfied and then construct the reduced matrix. If a row and a column are 

satisfied simultaneously, only one of the two is crossed out, and the remaining 

row (column) is assigned zero supply (demand). 

 

Step 5: Continue this process on the reduced till all the allocations for this method 

are finished. 

 

 

Example1: Use the (VAM) to find the solution to the following problem: 

 
 

Solution:    50ji ds  
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Basic variables are: S1D2=15, S2D3=15, S2D4=10, S3D1=5, S3D4=5 

Non basic variables are: S1D1=S1D3=S1D4=S2D1=S2D2=S3D2=S3D3=0 

 

 

The total cost of the transportation problem is: 

 
Z= 475 
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Basic variables are: O1D1= 200, O1D2= 50, O2D2= 175, O2D4=125,      

O3D3= 275,  O3D4= 125 

 

Non basic variables are: …………………… 

 

The total cost of the transportation problem is: 

 

 
Z = 12,075 

 

So this solution is the initial feasible solution 
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H.W 7 : Solve the following Transportation Problem using:  

1- North-west corner rule 

2- Least cost method 

3- VAM method 

 

 W1  W2  W3 W4  Available 

F1 1 2 1 4 30 

F2 3 3 2 1 50 

F3 4 2 5 9 20 

Requirements 20 40 30 10  
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Unbalanced Assignment Problem 
     If the cost matrix of an assignment problem is not square then the 

assignment problem is called an unbalanced assignment problem. In this case, 

dummy rows and columns are added to the matrix to form a square matrix. 

Then the usual assignment algorithm can be applied to this resulting balanced 

problem as shown in the following examples:  

 

A) Dummy  row                                             B) Dummy Column 

 

 

 

 

 

 

 

 

Example 1: A head department has four tasks to be performed and three 

subordinates. The subordinates differ in efficiency. The estimates of the time, 

each subordinates would take to perform is given below in the matrix. How 

should be allocate the tasks, one to each man, so as to minimize the total man 

hour? 

 Men 

  1 2 3 

Tasks I 9 26 15 

II 13 27 6 

III 35 20 15 

IV 18 30 20 

 

Solution: 

Number of Jobs ≠ Number of Men    4 ≠ 3 

Dummy column is added in the matrix: 

 
 Men 

 1 2 3 4 

Tasks I 9 26 15 0 

II 13 27 6 0 

III 35 20 15 0 

IV 18 30 20 0 



Operational Research                                                  Dr. Hajem Alsufrani 

 Lecture (12)                                                                          2021/2020 

2 

 

 

Number of Jobs = Number of Men  4 = 4 

Step 1: Subtract the smallest element from each row, then subtract the smallest 

element from each column  

 

 
 Men 

 1 2 3 4 

Tasks I 0 6 9 0 

II 4 7 0 0 

III 26 0 9 0 

IV 9 10 14 0 

 

 

Now we draw the minimum number of lines : 

 

 1 2 3 4 

I 0 6 9 0 

II 4 7 0 0 

III 26 0 9 0 

IV 9 10 14 0 

 

Here, N = 4 = n (the order of matrix). 

Then, we make the assignment. 

 

 

 

 1 2 3 4 

I  6 9 0 

II 4 7   0 

III 26  9 0 

IV 9 10 14 0 
0 

0 

0 

0 
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Job I → 1 Man = 9 

Job II → 3 Man = 6 

Job III → 2 Man = 20 

Job IV → 4 Man = 0 

Total cost is Z= 
 

4

1

4

1i j

ijij xc    Z = 35 

 

Example 2: A company has 4 machines to do 3 jobs. Each job can be assigned 

to one and only one machine. The cost of each job on each machine is given as 

follows. Determine the job assignments which will minimize the total cost. 

 

 

 

 

 

 

 

 

 

Solution Since the cost matrix is not a square matrix we add a dummy row D 

with all the elements 0. 

 

 

 

 

 

 

 

 

 

 

Subtract the minimum element in each row from all the elements in its row. 

 

 

 

 

 

 

 

 

 

     Machine 

 

Job 

1 2 3 4 

A 18 24 28 32 

B 8 13 17 18 

C 10 15 19 22 

     Machine 

 

Job 

1 2 3 4 

A 18 24 28 32 

B 8 13 17 18 

C 10 15 19 22 

D 0 0 0 0 

     Machine 

 

Job 

1 2 3 4 

A 0 6 10 14 

B 0 5 9 10 

C 0 5 9 12 

D 0 0 0 0 
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Since each column has minimum element 0, we draw minimum number of lines 

to cover all zeroes. 

 

 

 

 

 

 

 

 

 

 

 ∴the number of lines drawn to cover all zeroes = 2 < the order of matrix, we 

form a second modified matrix. 

 

 

 

 

 

 

 

 

 

 

 

Here, N = 3 < n = 4.  Again, we subtract the smallest uncovered element from 

all the uncovered elements and add to the element at the point of intersection. 

 

 

 

 

 

 

 

 

 

 

 

 

Here, N = 4 = n. Hence, we make an assignment. 

 

     Machine 

 

Job 

1 2 3 4 

A 0 6 10 14 

B 0 5 9 10 

C 0 5 9 12 

D 0 0 0 0 

     Machine 

 

Job 

1 2 3 4 

A 0 1 5 9 

B 0 0 4 5 

C 0 0 4 7 

D 5 0 0 0 

     Machine 

 

Job 

1 2 3 4 

A 0 1 1 4 

B 0 0 0 1 

C 0 0 0 3 

D 9 4 0 0 
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Job A →  Machine 1 =  18 

Job B → Machine  2  = 13 

Job C → Machine  3 =  19 

Job D → Machine  4 = 0    Since D is a dummy job, machine 4 has assigned no job. 

Total cost is Z= 
 

4

1

4

1i j

ijij xc    Z = 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Machine 

 

Job 

1 2 3 4 

A 

 

 

1 

 

1 

 

4 

B  

0 
 

 

0 

 

1 

C  

0 

 

0 

 

 

3 

D  

9 

 

4 

 

0  

0 
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 City 1 City 2 City 3 City 4 SUPPLY 

Plant 1 
 8  6  10  9 

35 
25–  10      

Plant 2  
 9  12  13  7 

50 
20+    30–    

Plant 3 
 14  9  16  5 

40 
  10     30  

DEMAND 45 20 30 30 125 

x11 would leave the basis. New bfs is shown at the following table: 

ui/vj 6 6 10 2 SUPPLY 

0 
 8  6  10  9 

35 
  10  25    

3 
 9  12  13  7 

50 
45    5    

3 
 14  9  16  5 

40 
  10     30  

DEMAND 45 20 30 30 125 

ĉ11 = -2, ĉ14 = -7, ĉ22 = -3, ĉ24 = -2, ĉ31 = -5, ĉ33 = -3 

Since all ĉij’s are negative, an optimal solution has been obtained. 

 

Report 

45 million kwh of electricity would be sent from plant 2 to city 1. 

10 million kwh of electricity would be sent from plant 1 to city 2. Similarly, 10 million 

kwh of electricity would be sent from plant 3 to city 2. 

25 million kwh of electricity would be sent from plant 1 to city 3. 5 million kwh of 

electricity would be sent from plant 2 to city 3. 

30 million kwh of electricity would be sent from plant 3 to city 4 and 

Total shipping cost is: 

z = .9 (45) + 6 (10) + 9 (10) + 10 (25) + 13 (5) + 5 (30) = $ 1020  

 

4.4 TRANSSHIPMENT PROBLEMS 

Sometimes a point in the shipment process can both receive goods from other points 

and send goods to other points. This point is called as transshipment point through 

which goods can be transshipped on their journey from a supply point to demand 

point. 

Shipping problem with this characteristic is a transshipment problem. 
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The optimal solution to a transshipment problem can be found by converting this 

transshipment problem to a transportation problem and then solving this 

transportation problem. 

 

Remark 

As stated in “Formulating Transportation Problems”, we define a supply point to be 

a point that can send goods to another point but cannot receive goods from any other 

point. 

Similarly, a demand point is a point that can receive goods from other points but 

cannot send goods to any other point. 

 

Steps 

1. If the problem is unbalanced, balance it 

Let s = total available supply (or demand) for balanced problem 

2. Construct a transportation tableau as follows 

A row in the tableau will be needed for each supply point and transshipment point 

A column will be needed for each demand point and transshipment point 

Each supply point will have a supply equal to its original supply 

Each demand point will have a demand equal to its original demand  

Each transshipment point will have a supply equal to “that point’s original supply + 

s”  

Each transshipment point will have a demand equal to “that point’s original 

demand + s” 

3. Solve the transportation problem 

 

Example 1. Bosphorus  

(Based on Winston 7.6.) 

Bosphorus manufactures LCD TVs at two factories, one in Istanbul and one in 

Bruges. The Istanbul factory can produce up to 150 TVs per day, and the Bruges 

factory can produce up to 200 TVs per day. TVs are shipped by air to customers in 

London and Paris. The customers in each city require 130 TVs per day. Because of 

the deregulation of air fares, Bosphorus  believes that it may be cheaper to first fly 

some TVs to Amsterdam or Munchen and then fly them to their final destinations. 
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The costs of flying a TV are shown at the table below. Bosphorus wants to minimize 

the total cost of shipping the required TVs to its customers.  

€ To 
From Istanbul Bruges Amsterdam Munchen London Paris 

Istanbul 0 - 8 13 25 28 
Bruges - 0 15 12 26 25 

Amsterdam - - 0 6 16 17 
Munchen - - 6 0 14 16 
London - - - - 0 - 
Paris - - - - - 0 

 

Answer:  

In this problem Amsterdam and Munchen are transshipment points. 

Step 1. Balancing the problem 

Total supply = 150 + 200 = 350 

Total demand = 130 + 130 = 260 

Dummy’s demand = 350 – 260 = 90 

s = 350 (total available supply or demand for balanced problem) 

Step 2. Constructing a transportation tableau 

Transshipment point’s demand = Its original demand + s = 0 + 350 = 350 

Transshipment point’s supply = Its original supply + s = 0 + 350 = 350 

  Amsterdam Munchen London Paris Dummy Supply 

Istanbul 
 8  13  25  28  0 

150 
          

Bruges 
 15  12  26  25  0 

200 
          

Amsterdam 
 0  6  16  17  0 

350 
          

Munchen 
 6  0  14  16  0 

350 
          

Demand 350 350 130 130 90   

Step 3. Solving the transportation problem 

  Amsterdam Munchen London Paris Dummy Supply 

Istanbul 
 8  13  25  28  0 

150 
130        20  

Bruges 
 15  12  26  25  0 

200 
      130  70  

Amsterdam 
 0  6  16  17  0 

350 
220    130      

Munchen 
 6  0  14  16  0 

350 
  350        

Demand 350 350 130 130 90 1050 
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Report: 

Bosphorus should produce 130 TVs at Istanbul, ship them to Amsterdam, and 

transship them from Amsterdam to London. 

The 130 TVs produced at Bruges should be shipped directly to Paris. 

The total shipment is 6370 Euros.  

 

4.5 ASSIGNMENT PROBLEMS 

There is a special case of transportation problems where each supply point should 

be assigned to a demand point and each demand should be met. This certain class 

of problems is called as “assignment problems”. For example determining which 

employee or machine should be assigned to which job is an assignment problem.  

 

4.5.1 LP Representation 

An assignment problem is characterized by knowledge of the cost of assigning each 

supply point to each demand point: cij 

On the other hand, a 0-1 integer variable xij is defined as follows 

 xij = 1 if supply point i is assigned to meet the demands of demand point j 

 xij = 0 if supply point i is not assigned to meet the demands of point j 

In this case, the general LP representation of an assignment problem is  

 min i  j cij xij 

 s.t. j xij = 1 (i=1,2, ..., m) Supply constraints 

  i xij = 1 (j=1,2, ..., n) Demand constraints 

 xij = 0 or xij = 1 

 

4.5.2 Hungarian Method 

Since all the supplies and demands for any assignment problem are integers, all 

variables in optimal solution of the problem must be integers. Since the RHS of each 

constraint is equal to 1, each xij must be a nonnegative integer that is no larger than 

1, so each xij must equal 0 or 1. 

Ignoring the xij = 0 or xij = 1 restrictions at the LP representation of the assignment 

problem, we see that we confront with a balanced transportation problem in which 

each supply point has a supply of 1 and each demand point has a demand of 1. 
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New   -row=
      =[current    -row] =

      [0  0  -1.6  0  0.75   6] 

                       =[0   0   -2.133   0   1    8] 

New   -row= [1  0  4  0  -2.5   60]-(-2.5)[ 0   0   -2.133   0   1    8] 

                       =[1   0   -1.333   0   0    80] 

New   -row= [0  1  0  0  1.25   50]-(-1.25)[ 0   0 -2.133   0  1    8] 

                       =[0   1   -2.76   0   0    40] 

New  -row= [0  0  8  0  -1.25   270]-(-2.5)[ 0  0  -2.133   0   1    8] 

                       =[0   0   5.33   0   0    280] 

Table 3: (optimal solution): 

Basic                Sol.    1 0 -1.333 0 0 80    0 0 -2.133 0 1 8    0 1 -2.67 0 0 40 

Max Z 0 0 5.33 0 0 280 

 

The optimal solution :   =80      ,           ,                        //  Z=280 

 

Example 3: 

            Use the simplex method to solve the (LP) model: 

                      

    Subject to 

                      

                         

                               

                                



Solution:                       

    Subject to 

                         

                           

                                 

                                 

Table 1: 

 

                      

  
              

New   -row or    -row =
   [1  2  0   0  0  1   700] 

                                             =[
     1   0   0   0    

      350] 

New   -row = [1  1  1  1  0  0   1000]-(1)[      1 0  0   0  
      350] 

                             =[
     0   1   1   0   - 

      650] 

New   -row = [1  1  0  0  1  0   500]-(1)[      1 0  0   0  
      350] 

                             =[
     0   0   0   1   - 

      150] 

Basic                   Sol.    1 1 1 1 0 0 1000    1 1 0 0 1 0 500    1 2 0 0 1 1 700 

Max Z 6 10 4 0 0 0 0 



New  -row = [6  10  4  0  0  0   0]-(10)[      1 0  0   0  
      350] 

                             =[1   0   4   0   0   -      -3500] 

 

Table 2: 

 

           

                  (ignore) 

  
            (ignore)   

New   -row or    -row = [
     0  1   1  0  -

     650] 

                                             =[
     0  1   1  0  -

     650] 

New   -row = [
    0  0  0  1 - 

     150]-(0)[      0  1   1  0  -
     650] 

                             =[
    0  0  0  1 - 

     150] 

New   -row = [
    1  0  0  0   

     350]-(0)[      0  1   1  0  -
     650] 

                             =[
    1  0  0  0   

     350] 

New  -row = [   0  4  0  0  -5   -3500]-(4)[      0  1   1  0  -
     650] 

                             =[-1  0  0  -4  0   -3   -6100] 

 

Basic                   Sol.    1/2 0 1 1 0 -1/2 650    1/2 0 0 0 1 -1/2 150    1/2 1 0 0 0 1/2 350 

Max Z 1 0 4 0 0 -5 -3500 



Table 3: (optimal solution): 

 

The optimal solution :   =650    ,            ,                           //  Z=280 

 

Example 4: 

            Use the simplex method to solve the (LP) model:               

    Subject to 

                   

              

                        

                             

Solution:                 

    Subject to 

                     

                

                          

                            

 

Basic                   Sol.    1/2 0 1 1 0 -1/2 650    1/2 0 0 0 1 -1/2 150    1/2 1 0 0 0 1/2 350 

Max Z -1 0 0 -4 0 -3 -6100 
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1.5 Definition of the General LP Problem

Definition: a function f(x1, x2, . . . , xn) of the n variables

x1, x2, . . . , xn is a linear function if and only if there is a set of constants

c1, c2, . . . , cn such that

f(x1, x2, . . . , xn) = c1x1 + c2x2 + · · ·+ cnxn

= cTx , say.

Definition: for any linear function f(x1, x2, . . . , xn) and any real value b,

a linear inequality is a relation taking one or other of the following forms:

f(x1, x2, . . . , xn) ≤ b

or

f(x1, x2, . . . , xn) ≥ b .

Definition: for any linear function f(x1, x2, . . . , xn) and any real value b,

a linear equality is a relation of the following form:

f(x1, x2, . . . , xn) = b .

22



Definition: A Linear Programming Problem is an optimisation problem

in which

• we are required to optimise (that is, maximise or minimise) a linear
function of the decision variables;

• the values of the decision variables are required to satisfy a set of linear
constraints (that is, linear inequalities

and / or linear equalities);

• a sign restriction is associated with each decision variable (that is, each
decision variable xi is required to be either non-negative or unrestricted).
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1.6 Standard Form of the General LP Problem

Definition: A Linear Programming Problem is in Standard Form if it is

written in the following way:

max cTx ,

s.t. A x = b ,

x ≥ 0 ,

where

• A =















a11 a12 . . . a1n

a21 a22 . . . a2n
.
.
.

.

.

.
.
.
.

.

.

.

am1 am2 . . . amn















,

• c = (c1, c2, . . . , cn)
T , x = (x1, x2, . . . , xn)

T ,

b = (b1, b2, . . . , bm)T ,

• bi ≥ 0 ∀ i ∈ [1,m] , n > m and rank(A) = m .

Note that A always has more columns than rows. This means that the

system A x = b has more variables than equations (so, usually, there are

many solutions to the system).
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At this stage, it is very important to be able to show that any LP problem can

be transformed into the Standard Form. We do this by showing how to deal

with “situations” that don’t (at first sight) seem to fit into the Standard Form:

1. If a constraint is an equality with a negative right-hand-side (RHS), then

we multiply it by−1. For example:

x1 − x2 = −2 ⇒ −x1 + x2 = 2

2. If an inequality constraint has a negative RHS, multiply it by−1 (which

reverses the direction of the inequality) and then apply Step 3 to it (see

below). For example:

2x1 − x2 ≥ −2 ⇒ −2x1 + x2 ≤ 2

3. For any inequality constraint with non-negative RHS, include a slack

variable for a≤ constraint or a surplus variable for a≥ constraint. For

example:

−2x1 + x2 ≤ 2 ⇒ −2x1 + x2 + s1 = 2 and s1 ≥ 0 ;

−2x1 + x2 ≥ 2 ⇒ −2x1 + x2 − s2 = 2 and s2 ≥ 0 .

4. If a particular variable is unrestricted in sign, we re-express it as the

difference of two sign-restricted variables. For example:

xi unrestricted ⇒ xi = s3 − s4 with s3, s4 ≥ 0 .

5. If we are given a minimisation problem, we just multiply the objective

function by−1 and then maximise. E.g.:

min (4x1 − 5x2) is equivalent to max (−4x1 + 5x2)
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Example

If we are given the problem

min −3x1 − 2x2

s.t.

x1 − 2x2 = −2
2x1 + x2 ≤ 6

−2x1 − 3x2 ≤ −14
x1, x2 ≥ 0

m

max 3x1 + 2x2 + 0s1 + 0s2

s.t. −x1 + 2x2 = 2

2x1 + x2 + s1 = 6

2x1 + 3x2 − s2 = 14

x1 , x2 , s1 , s2 ≥ 0

Note: s1 is a slack variable and s2 is a surplus variable.
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Another example: the MachineCo Problem

We have seen that this problem can be written in the form:

max 5000E + 4000F

s.t. 10E + 15F ≤ 150

20E + 10F ≤ 160

30E + 10F ≥ 135

E − 3F ≤ 0

E + F ≥ 5

E,F ≥ 0 .

The Standard Form for this problem is:

max 5000E + 4000F + 0s1 + 0s2 + 0s3 + 0s4 + 0s5

s.t.

10E +15F +s1 = 150

20E +10F +s2 = 160

30E +10F −s3 = 135

E −3F +s4 = 0

E +F −s5 = 5

E,F, s1, s2, s3, s4, s5 ≥ 0 .
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1.7 Other Types of OR Problem

To conclude this first section, we briefly consider two types of OR problem

which have some similarities to LP problems but, also, important differences:

1. Integer Programming

2. Nonlinear Programming

Integer Programming

Consider the following problem:

max z = 5x1 + 27x2

s.t.

2x1 + 11x2 ≤ 59

x1 − x2 ≤ 7

x1, x2 ≥ 0 .

The solution is found to be: x∗

1
= 10 6

13
, x∗

2
= 3 6

13
, z∗ = 145 10

13
.

Now suppose that we include the additional constraints that x1 and x2 must

be integers (recall that the MachineCo problem considered earlier, if it is to

be genuinely realistic, should include similar constraints). Such extra

constraints change the nature of the problem considerably. How do we solve

such a problem? We could try rounding the solution of the original problem:
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x1 x2 z feasible?

10 3 131
√

10 4 158 ×
11 3 136 ×
11 4 163 ×

However, the actual solution of the problem with the integer constraints is

x∗

1
= 2, x∗

2
= 5, z∗ = 145 .

This point does not correspond to any of the “rounded” versions considered

above, so rounding is not a reliable technique for solving Integer

Programming problems. Such problems will be considered further in MA306.

29


